
orbitize Documentation

Sarah Blunt, Jason Wang, Henry Ngo, et al.

Feb 29, 2024

CONTENTS

1 Attribution: 3

2 User Guide: 5
2.1 Installation . 5
2.2 Tutorials . 6
2.3 Frequently Asked Questions . 97
2.4 Contributing to the Code . 103
2.5 Detailed API Documentation . 103
2.6 orbitize! Manual . 136

3 Changelog: 139

Python Module Index 145

Index 147

i

ii

orbitize Documentation

Hello world! Welcome to the documentation for orbitize, a Python package for fitting orbits of directly imaged
planets.

orbitize packages two back-end algorithms into a consistent API. It’s written to be fast, extensible, and easy-to-use.
The tutorials below will walk you through the code and introduce some technical stuff, but we suggest learning about the
Orbits for the Impatient (OFTI) algorithm and MCMC algorithms (we use this one) before diving in. Our contributor
guidelines document will point you to more useful resources.

orbitize is designed to meet the needs of the exoplanet imaging community, and we encourage community involve-
ment. If you find a bug, want to request a feature, etc. please create an issue on GitHub.

orbitize is patterned after and inspired by radvel.

CONTENTS 1

https://ui.adsabs.harvard.edu/#abs/2017AJ....153..229B/abstract
http://dfm.io/emcee/current/
https://github.com/sblunt/orbitize/blob/master/contributor_guidelines.md
https://github.com/sblunt/orbitize/blob/master/contributor_guidelines.md
https://github.com/sblunt/orbitize/issues
https://radvel.readthedocs.io/en/latest/

orbitize Documentation

2 CONTENTS

CHAPTER

ONE

ATTRIBUTION:

• If you use orbitize in your work, please cite Blunt et al (2019).

• If you use the OFTI algorithm, please also cite Blunt et al (2017).

• If you use the Affine-invariant MCMC algorithm from emcee, please also cite Foreman-Mackey et al (2013).

• If you use the parallel-tempered Affine-invariant MCMC algorithm from ptemcee, please also cite Vousden et
al (2016).

• If you use the Hipparcos intermediate astrometric data (IAD) fitting capability, please also cite Nielsen et al
(2020) and van Leeuwen et al (2007).

• If you use Gaia data, please also cite Gaia Collaboration et al (2018; for DR2), or Gaia Collaboration et al (2021;
for eDR3).

3

https://ui.adsabs.harvard.edu/abs/2019arXiv191001756B/abstract
https://ui.adsabs.harvard.edu/#abs/2017AJ....153..229B/abstract
https://ui.adsabs.harvard.edu/abs/2013PASP..125..306F/abstract
https://ui.adsabs.harvard.edu/abs/2016MNRAS.455.1919V/abstract
https://ui.adsabs.harvard.edu/abs/2016MNRAS.455.1919V/abstract
https://ui.adsabs.harvard.edu/abs/2020AJ....159...71N/abstract
https://ui.adsabs.harvard.edu/abs/2020AJ....159...71N/abstract
https://ui.adsabs.harvard.edu/abs/2007A%26A...474..653V/abstract
https://ui.adsabs.harvard.edu/abs/2018A%26A...616A...1G/abstract
https://ui.adsabs.harvard.edu/abs/2021A%26A...649A...1G/abstract
https://ui.adsabs.harvard.edu/abs/2021A%26A...649A...1G/abstract

orbitize Documentation

4 Chapter 1. Attribution:

CHAPTER

TWO

USER GUIDE:

2.1 Installation

2.1.1 For Users

Parts of orbitize are written in C, so you’ll need gcc (a C compiler) to install properly. Most Linux and Windows
computers come with gcc built in, but Mac computers don’t. If you haven’t before, you’ll need to download Xcode
command line tools. There are several helpful guides online that teach you how to do this. Let us know if you have
trouble!

orbitize is registered on pip, and works in Python>3.6. To install orbitize, first make sure you have the latest
versions of numpy and cython installed. With pip, you can do this with the command:

$ pip install numpy cython --upgrade

Next, install orbitize:

$ pip install orbitize

We recommend installing and running orbitize in a conda virtual environment. Install anaconda or miniconda
here, then see instructions here to learn more about conda virtual environments.

2.1.2 For Windows Users

Many of the packages that we use in orbitize were originally written for Linux or macOS. For that reason, we highly
recommend installing the Windows Subsystem for Linux (WSL) which is an entire Linux development environment
within Windows. See here for a handy getting started guide.

If you don’t want to use WSL, there are a few extra steps you’ll need to follow to get orbitize running:

1. There is a bug with the ptemcee installation that, as far as we know, only affects Windows users. To work around
this, download ptemcee from its pypi page. Navigate to the root ptemcee folder, remove the README.md file, then
install:

$ cd ptemcee
$ rm README.md
$ pip install . --upgrade

2. Some users have reported issues with installing curses. If this happens to you, you can install windows-curses
which should work as a replacement.

5

https://conda.io/miniconda.html
https://conda.io/docs/user-guide/tasks/manage-environments.html
https://docs.microsoft.com/en-us/windows/wsl/about
https://github.com/semaphoreP/codeastro/blob/main/Day0/INSTALL_WINDOWS.md#windows-subsystem-for-linux-wsl
https://pypi.org/project/ptemcee/

orbitize Documentation

$ pip install windows-curses

3. Finally, rebound is not compatible with windows, so you’ll need to git clone orbitize, remove rebound from or-
bitize/requirements.txt, then install from the command line.

$ git clone https://github.com/sblunt/orbitize.git
$ cd orbitize

Open up orbitize/requirements.txt, remove rebound, and save.

$ pip install . --upgrade

2.1.3 For Developers

orbitize is actively being developed. The following method for installing orbitize will allow you to use it and
make changes to it. After cloning the Git repository, run the following command in the top level of the repo:

$ pip install -r requirements.txt -e .

2.1.4 Issues?

If you run into any issues installing orbitize, please create an issue on GitHub.

If you are specifically having difficulties using cython to install orbitize, we suggest first trying to install wheel,
then installing all of the orbitize dependencies (listed in requirements.txt).

If that doesn’t work, we suggest disabling compilation of the C-based Kepler module with the following alternative
installation command:

$ pip install orbitize --install-option="--disable-cython"

2.2 Tutorials

The following tutorials walk you through performing orbit fits with orbitize. To get started, read through “Formatting
Input,” “OFTI Introduction,” and “MCMC Introduction.” To learn more about the orbitize API, check out “Modi-
fying Priors” and “Modifying MCMC Initial Positions.” For an advanced plotting demo, see “Advanced Plotting,” and
to learn about the differences between OFTI and MCMC algorithms, we suggest “MCMC vs OFTI Comparison.”

We also have a bunch of tutorials designed to introduce you to specific features of our code, listed below.

Many of these tutorials are also available as jupyter notebooks here.

If you find a bug, or if something is unclear, please create an issue on GitHub! We’d love any feedback on how to make
orbitize more accessible.

A note about the tutorials: There are many ways to interact with the orbitize code base, and each person on our
team uses the code differently. Each tutorial has a different author, and correspondingly a different style of using and
explaining the code. If you are confused by part of one tutorial, we suggest looking at some of the others (and then
contacting us if you are still confused).

6 Chapter 2. User Guide:

https://github.com/sblunt/orbitize/tree/main/docs/tutorials

orbitize Documentation

2.2.1 Quick Start

This brief tutorial goes through the most minimal code you could write to do an orbit fit with orbitize!. It uses an
input .csv that was placed on your computer when you installed orbitize!. The file lives here:

[1]: import orbitize

path_to_file = "{}GJ504.csv".format(orbitize.DATADIR)

print(path_to_file)

/home/sblunt/Projects/orbitize/orbitize/example_data/GJ504.csv

The input .csv file looks like this:

[2]: from orbitize import read_input

read_input.read_file(path_to_file)

[2]: <Table length=7>
epoch object quant1 quant1_err ... quant12_corr quant_type instrument
float64 int64 float64 float64 ... float64 bytes5 bytes5

-------------- ------ ------- ---------- ... ------------ ---------- ----------
55645.95 1 2479.0 16.0 ... nan seppa defsp
55702.89 1 2483.0 8.0 ... nan seppa defsp
55785.015 1 2481.0 33.0 ... nan seppa defsp
55787.935 1 2448.0 24.0 ... nan seppa defsp

55985.19400184 1 2483.0 15.0 ... nan seppa defsp
56029.11400323 1 2487.0 8.0 ... nan seppa defsp
56072.30200459 1 2499.0 26.0 ... nan seppa defsp

[3]: %matplotlib inline

from orbitize import driver

myDriver = driver.Driver(
'{}/GJ504.csv'.format(orbitize.DATADIR), # data file
'OFTI', # choose from: ['OFTI', 'MCMC']
1, # number of planets in system
1.22, # total mass [M_sun]
56.95, # system parallax [mas]
mass_err=0.08, # mass error [M_sun]
plx_err=0.26 # parallax error [mas]

)
orbits = myDriver.sampler.run_sampler(1000)

plot the results
myResults = myDriver.sampler.results
orbit_figure = myResults.plot_orbits(

start_mjd=myDriver.system.data_table['epoch'][0] # minimum MJD for colorbar (choose␣
→˓first data epoch)
)

2.2. Tutorials 7

orbitize Documentation

WARNING: ErfaWarning: ERFA function "d2dtf" yielded 1 of "dubious year (Note 5)"␣
→˓[astropy._erfa.core]
WARNING: ErfaWarning: ERFA function "dtf2d" yielded 1 of "dubious year (Note 6)"␣
→˓[astropy._erfa.core]
WARNING: ErfaWarning: ERFA function "utctai" yielded 1 of "dubious year (Note 3)"␣
→˓[astropy._erfa.core]
WARNING: ErfaWarning: ERFA function "taiutc" yielded 1 of "dubious year (Note 4)"␣
→˓[astropy._erfa.core]
WARNING: ErfaWarning: ERFA function "dtf2d" yielded 8 of "dubious year (Note 6)"␣
→˓[astropy._erfa.core]

<Figure size 1008x432 with 0 Axes>

2.2.2 Formatting Input

Use orbitize.read_input.read_file() to read your astrometric data into orbitize. This method takes one argu-
ment, a string to the path of the file containing your input.

This method can read any file format supported by astropy.io.ascii.read(), including csv format. See the astropy
docs.

There are two ways to provide input data to orbitize, either as observations or as an orbitize!-formatted input table.

Option 1

You can provide your observations in one of the following valid sets of measurements using the corresponding column
names:

• RA and DEC offsets [milliarcseconds], using column names raoff, raoff_err, decoff, and decoff_err; or

• sep [milliarcseconds] and PA [degrees East of NCP], using column names sep, sep_err, pa, and pa_err; or

• RV measurement [km/s] using column names rv and rv_err.

8 Chapter 2. User Guide:

http://docs.astropy.org/en/stable/io/ascii/index.html#id1
http://docs.astropy.org/en/stable/io/ascii/index.html#id1

orbitize Documentation

Each row must also have a column for epoch and object. Epoch is the date of the observation, in MJD (JD-2400000.5).
If this method thinks you have provided a date in JD, it will print a warning and attempt to convert to MJD. Objects are
numbered with integers, where the primary/central object is 0.

You may mix and match these three valid measurement formats in the same input file. So, you can have some epochs
with RA/DEC offsets and others in separation/PA measurements.

If you have, for example, one RV measurement of a star and three astrometric measurements of an orbiting planet, you
should put 0 in the object column for the RV point, and 1 in the columns for the astrometric measurements.

This method will look for columns with the above labels in whatever file format you choose so if you encounter errors,
be sure to double check the column labels in your input file.

Putting it all together, here an example of a valid .csv input file:

epoch,object,raoff,raoff_err,decoff,decoff_err,radec_corr,sep,sep_err,pa,pa_err,rv,rv_err
1234,1,0.010,0.005,0.50,0.05,0.025,,,,,,
1235,1,,,,,,1.0,0.005,89.0,0.1,,
1236,1,,,,,,1.0,0.005,89.3,0.3,,
1237,0,,,,,,,,,,10,0.1

Note: Columns with no data can be omitted (e.g. if only separation and PA are given, the raoff, deoff, and rv columns
can be excluded).

If more than one valid set is given (e.g. RV measurement and astrometric measurement taken at the same epoch),
read_file() will generate a separate output row for each valid set.

Whatever file format you choose, this method will read your input into an orbitize!-formatted input table. This is an
astropy.Table.table object that looks like this (for the example input given above):

epoch object quant1 quant1_err quant2 quant2_err quant12_corr quant_type
float64 int float64 float64 float64 float64 float64 str5
------- ------ ------- ---------- ------- ---------- ------------ ----------
1234.0 1 0.01 0.005 0.5 0.05 0.025 radec
1235.0 1 1.0 0.005 89.0 0.1 nan seppa
1236.0 1 1.0 0.005 89.3 0.3 nan seppa
1237.0 0 10.0 0.1 nan nan nan rv

where quant_type is one of “radec”, “seppa”, or “rv”.

If quant_type is “radec” or “seppa”, the units of quant are mas and degrees, if quant_type is “rv”, the units of quant
are km/s.

Covariances

For RA/Dec and Sep/PA, you can optionally specify a correlation term. This is useful when your error ellipse is tilted
with respect to the RA/Dec or Sep/PA. The correlation term is the Pearson correlation coefficient (), which corresponds
to the normalized off diagonal term of the covariance matrix (C):

𝐶 =

[︂
𝐶11 𝐶12

𝐶12 𝐶22

]︂
.

Here C_11 = quant1_err^2 and C_22 = quant2_err^2 and C_12 is the off diagonal term (note that by definition both
off-diagonal terms of the covariance matrix are the same). Then, 𝜌 = 𝐶12/

√
𝐶11𝐶22. Essentially it is the covariance

normalized by the variance. As such, -1 1. You can specify either as radec_corr or seppa_corr to include a correlation

2.2. Tutorials 9

orbitize Documentation

in the errors. By definition, both are dimensionless, but one will correspond to RA/Dec and the other to Sep/PA. If no
correlations are specified, it will assume the errors are uncorrelated (= 0). In many papers, the errors are assumed to
be uncorrelated. An example of real world data that reports correlations is this GRAVITY paper where table 2 reports
the correlation values and figure 4 shows how the error ellipses are tilted.

In the example above, we specify the first epoch has a positive correlation between the uncertainties in RA and Dec
using the radec_corr column in the input data. This gets translated into the quant12_corr field in orbitize!-
format. No correlations are specified for the other entries, and so we will assume those errors are uncorrelated. After
this is specified, handling of the correlations will be done automatically when computing model likelihoods. There’s
nothing else you have to do after this step!

Option 2

Alternatively, you can also supply a data file with the columns already corresponding to the orbitize!-formatted
input table (see above for column names). This may be useful if you are wanting to use the output of the
write_orbitize_input method (e.g. using some input prepared by another orbitize! user).

Note: When providing data with columns in the orbitize format, there should be no empty cells. As in the example
below, when quant2 is not applicable, the cell should contain nan.

2.2.3 OFTI Introduction

by Isabel Angelo and Sarah Blunt (2018)

OFTI (Orbits For The Impatient) is an orbit-generating algorithm designed specifically to handle data covering short
fractions of long-period exoplanets (Blunt et al. 2017). Here we go through steps of using OFTI within orbitize!

[1]: import orbitize

Basic Orbit Generating

Orbits are generated in OFTI through a Driver class within orbitize. Once we have imported this class:

[2]: import orbitize.driver

we can initialize a Driver object specific to our data:

[3]: myDriver = orbitize.driver.Driver('{}/GJ504.csv'.format(orbitize.DATADIR), # path to␣
→˓data file

'OFTI', # name of algorithm for orbit-fitting
1, # number of secondary bodies in system
1.22, # total mass [M_sun]
56.95, # total parallax of system [mas]
mass_err=0.08, # mass error [M_sun]
plx_err=0.26) # parallax error [mas]

Because OFTI is an object class within orbitize, we can assign all of the OFTI attributes onto a variable (s). We can then
generate orbits for s using a function called run_sampler, a method of the OFTI class. The run_sampler method
takes in the desired number of accepted orbits as an input.

Here we use run OFTI to randomly generate orbits until 1000 are accepted:

10 Chapter 2. User Guide:

https://arxiv.org/abs/2101.04187
https://ui.adsabs.harvard.edu/#abs/2017AJ....153..229B/abstract

orbitize Documentation

[4]: s = myDriver.sampler
orbits = s.run_sampler(1000)

We have now generated 1000 possible orbits for our system. Here, orbits is a (1000 x 8) array, where each of the
1000 elements corresponds to a single orbit. An orbit is represented by 8 orbital elements.

Here is an example of what an accepted orbit looks like from orbitize:

[5]: orbits[0]

[5]: array([4.93916907e+01, 8.90197501e-03, 2.63925411e+00, 2.44962990e+00,
9.31508665e-01, 1.20302112e-01, 5.74242058e+01, 1.22728974e+00])

To further inspect what each of the 8 elements in your orbit represents, you can view the system.param_idx variable.
This is a dictionary that tells you the indices of your orbit that correspond to semi-major axis (a), eccentricity (e),
inclination (i), argument of periastron (aop), position angle of nodes (pan), and epoch of periastron passage (epp). The
last two indices are the parallax and system mass, and the number following the parameter name indicates the number
of the body in the system.

[6]: s.system.param_idx

[6]: {'sma1': 0,
'ecc1': 1,
'inc1': 2,
'aop1': 3,
'pan1': 4,
'tau1': 5,
'plx': 6,
'mtot': 7}

Plotting

Now that we can generate possible orbits for our system, we want to plot the data to interpret our results. Here we
will go through a brief overview on ways to visualize your data within orbitize. For a more detailed guide on data
visualization capabilities within orbitize, see the Orbitize plotting tutorial.

Histogram

One way to visualize our results is through histograms of our computed orbital parameters. Our orbits are outputted
from run_sampler as an array of orbits, where each orbit is represented by a set of orbital elements:

[7]: print(orbits.shape)
orbits[:5]

(1000, 8)

[7]: array([[4.93916907e+01, 8.90197501e-03, 2.63925411e+00, 2.44962990e+00,
9.31508665e-01, 1.20302112e-01, 5.74242058e+01, 1.22728974e+00],
[4.69543031e+01, 1.31571508e-01, 2.52917998e+00, 1.34963602e+00,
4.18692436e+00, 4.17659289e-01, 5.73207900e+01, 1.23162413e+00],
[5.15848551e+01, 1.18074455e-01, 2.26110475e+00, 2.98346893e+00,
2.31713931e+00, 3.94202277e-03, 5.69191065e+01, 1.15389146e+00],

(continues on next page)

2.2. Tutorials 11

https://orbitize.readthedocs.io/en/latest/tutorials/Plotting_tutorial.html

orbitize Documentation

(continued from previous page)

[3.89558225e+01, 3.71357464e-01, 2.94801131e+00, 3.08542398e+00,
4.77645562e+00, 7.15043369e-01, 5.72827098e+01, 1.05721164e+00],
[8.19463988e+01, 1.45955646e-02, 2.11512811e+00, 4.52064036e+00,
4.44802306e+00, 9.32004660e-01, 5.72429430e+01, 1.35323242e+00]])

We can effectively view outputs from run_sampler by creating a histogram of a given orbit element to see its distri-
bution of possible values. Our system.param_idx dictionary is useful here. We can use it to determine the index of a
given orbit that corresponds to the orbital element we are interested in:

[8]: s.system.param_idx

[8]: {'sma1': 0,
'ecc1': 1,
'inc1': 2,
'aop1': 3,
'pan1': 4,
'tau1': 5,
'plx': 6,
'mtot': 7}

If we want to plot the distribution of orbital semi-major axes (a) in our generated orbits, we would use the index
dictionary s.system.param_idx to index the semi-major axis element from each orbit:

[9]: sma = [x[s.system.param_idx['sma1']] for x in orbits]

%matplotlib inline
import matplotlib.pyplot as plt
plt.hist(sma, bins=30)
plt.xlabel('orbital semi-major axis [AU]')
plt.ylabel('occurrence')
plt.show()

You can use this method to create histograms of any orbital element you are interested in:

[10]: ecc = [x[s.system.param_idx['ecc1']] for x in orbits]
i = [x[s.system.param_idx['inc1']] for x in orbits]

(continues on next page)

12 Chapter 2. User Guide:

orbitize Documentation

(continued from previous page)

plt.figure(figsize=(10,3))
plt.subplot(131)
plt.hist(sma, bins=30)
plt.xlabel('orbital semi-major axis [AU]')
plt.ylabel('occurrence')

plt.subplot(132)
plt.hist(ecc, bins=30)
plt.xlabel('eccentricity [0,1]')
plt.ylabel('occurrence')

plt.subplot(133)
plt.hist(i, bins=30)
plt.xlabel('inclination angle [rad]')
plt.ylabel('occurrence')

plt.show()

In addition to our orbits array, Orbitize also creates a Results class that contains built-in plotting capabilities for
two types of plots: corner plots and orbit plots.

Corner Plot

After generating the samples, the run_sampler method also creates a Results object that can be accessed with s.
results:

[11]: myResults = s.results

We can now create a corner plot using the function plot_corner within the Results class. This function requires an
input list of the parameters, in string format, that you wish to include in your corner plot. We can even plot all of the
orbital parameters at once! As shown below:

[12]: corner_figure = myResults.plot_corner(param_list=['sma1', 'ecc1', 'inc1', 'aop1', 'pan1',
→˓'tau1'])

2.2. Tutorials 13

orbitize Documentation

A Note about Convergence

Those of you with experience looking at corner plots will note that the result here does not look converged (i.e. we
need more samples for our results to be statistically significant). Because this is a tutorial, we didn’t want you to have
to wait around for a while for the OFTI results to converge.

It’s safe to say that OFTI should accept a minimum of 10,000 orbit for convergence. For pretty plots to go in
publications, we recommend at least 1,000,000 accepted orbits.

14 Chapter 2. User Guide:

orbitize Documentation

Orbit Plot

What about if we want to see how the orbits look in the sky? Don’t worry, the Results class has a command for that
too! It’s called plot_orbits. We can create a simple orbit plot by running the command as follows:

[13]: epochs = myDriver.system.data_table['epoch']

orbit_figure = myResults.plot_orbits(
start_mjd=epochs[0] # Minimum MJD for colorbar (here we choose first data epoch)

)

WARNING: ErfaWarning: ERFA function "d2dtf" yielded 1 of "dubious year (Note 5)"␣
→˓[astropy._erfa.core]
WARNING: ErfaWarning: ERFA function "dtf2d" yielded 1 of "dubious year (Note 6)"␣
→˓[astropy._erfa.core]
WARNING: ErfaWarning: ERFA function "utctai" yielded 1 of "dubious year (Note 3)"␣
→˓[astropy._erfa.core]
WARNING: ErfaWarning: ERFA function "taiutc" yielded 1 of "dubious year (Note 4)"␣
→˓[astropy._erfa.core]
WARNING: ErfaWarning: ERFA function "dtf2d" yielded 8 of "dubious year (Note 6)"␣
→˓[astropy._erfa.core]

<Figure size 1008x432 with 0 Axes>

Advanced OFTI and API Interaction

We’ve seen how the run_sampler command is the fastest way to generate orbits within OFTI. For users interested
in what’s going on under-the-hood, this part of the tutorial takes us each step of run_sampler. Understanding the
intermediate stages of orbit-fitting can allow for more customization that goes beyond Orbitize’s default parameters.

We begin again by intializing a sampler object on which we can run OFTI:

[14]: myDriver = orbitize.driver.Driver('{}/GJ504.csv'.format(orbitize.DATADIR), # path to␣
→˓data file

'OFTI', # name of algorith for orbit-fitting
1, # number of secondary bodies in system

(continues on next page)

2.2. Tutorials 15

orbitize Documentation

(continued from previous page)

1.22, # total mass [M_sun]
56.95, # total parallax of system [mas]
mass_err=0.08, # mass error [M_sun]
plx_err=0.26) # parallax error [mas]

[15]: s = myDriver.sampler

In orbitize, the first thing that OFTI does is prepare an initial set of possible orbits for our object through a function
called prepare_samples, which takes in the number of orbits to generate as an input. For example, we can generate
100,000 orbits as follows:

[16]: samples = s.prepare_samples(100000)

Here, samples is an array of randomly generated orbits that have been scaled-and-rotated to fit our astrometric ob-
servations. The first and second dimension of this array are the number of orbital elements and total orbits generated,
respectively. In other words, each element in samples represents the value of a particular orbital element for each
generated orbit:

[17]: print('samples: ', samples.shape)
print('first element of samples: ', samples[0].shape)

samples: (8, 100000)
first element of samples: (100000,)

Once our initial set of orbits is generated, the orbits are vetted for likelihood in a function called reject. This function
computes the probability of an orbit based on its associated chi squared. It then rejects orbits with lower likelihoods
and accepts the orbits that are more probable. The output of this function is an array of possible orbits for our input
system.

[18]: orbits, lnlikes = s.reject(samples)

Our orbits array represents the final orbits that are output by OFTI. Each element in this array contains the 8 orbital
elements that are computed by orbitize:

[19]: orbits.shape

[19]: (1, 8)

We can synthesize this sequence with the run_sampler() command, which runs through the steps above until the input
number of orbits has been accepted. Additionally, we can specify the number of orbits generated by prepare_samples
each time the sequence is initiated with an argument called num_samples. Higher values for num_sampleswill output
more accepted orbits, but may take longer to run since all initially prepared orbits will be run through the rejection step.

[20]: orbits = s.run_sampler(100, num_samples=1000)

16 Chapter 2. User Guide:

orbitize Documentation

Saving and Loading Results

Finally, we can save our generated orbits in a file that can be easily read for future use and analysis. Here we will
walk through the steps of saving a set of orbits to a file in hdf5 format. The easiest way to do this is using orbitize.
Results.save_results():

[21]: s.results.save_results('orbits.hdf5')

Now when you are ready to use your orbits data, it is easily accessible through the file we’ve created. One way to do
this is to load the data into a new results object; in this way you can make use of the functions that we learn before,
like plot_corner and plot_orbits. To do this, use the results module:

[22]: import orbitize.results
loaded_results = orbitize.results.Results() # create a blank results object to load the␣
→˓data
loaded_results.load_results('orbits.hdf5')

Alternatively, you can directly access the saved data using the h5py module:

[23]: import h5py
f = h5py.File('orbits.hdf5', 'r')
orbits = f['post']

print('orbits array dimensions: ', orbits.shape)
print('orbital elements for first orbit: ', orbits[0])

f.close()

orbits array dimensions: (100, 8)
orbital elements for first orbit: [42.56737306 0.18520168 2.50497349 1.46225095 3.
→˓29419715 0.60649612
57.26589357 1.1478072]

And now we can easily work with the saved orbits that were generated by orbitize! Find out more about generating
orbits in orbitize! with tutorials here.

2.2.4 MCMC Introduction

by Jason Wang and Henry Ngo (2018)

Here, we will explain how to sample an orbit posterior using MCMC techniques. MCMC samplers take some time to
fully converge on the complex posterior, but should be able to explore all posteriors in roughly the same amount of time
(unlike OFTI). We will use the parallel-tempered version of the Affine-invariant sample from the ptemcee package,
as the parallel tempering helps the walkers get out of local minima. Parallel-tempering can be disabled by setting the
number of temperatures to 1, and will revert back to using the regular ensemble sampler from emcee.

2.2. Tutorials 17

https://orbitize.readthedocs.io/en/latest/tutorials.html

orbitize Documentation

Read in Data and Set up Sampler

We use orbitize.driver.Driver to streamline the processes of reading in data, setting up the two-body interaction,
and setting up the MCMC sampler.

When setting up the sampler, we need to decide how many temperatures and how many walkers per temperature to use.
Increasing the number of temperatures further ensures your walkers will explore all of parameter space and will not get
stuck in local minima. Increasing the number of walkers gives you more samples to use, and, for the Affine-invariant
sampler, a minimum number is required for good convergence. Of course, the tradeoff is that more samplers means
more computation time. We find 20 temperatures and 1000 walkers to be reliable for convergence. Since this is a
tutorial meant to be run quickly, we use fewer walkers and temperatures here.

Note that we will only use the samples from the lowest-temperature walkers. We also assume that our astrometric
measurements follow a Gaussian distribution.

orbitize can also fit for the total mass of the system and system parallax, including marginalizing over the uncertain-
ties in those parameters.

[2]: import numpy as np

import orbitize
from orbitize import driver
import multiprocessing as mp

filename = "{}/GJ504.csv".format(orbitize.DATADIR)

system parameters
num_secondary_bodies = 1
total_mass = 1.75 # [Msol]
plx = 51.44 # [mas]
mass_err = 0.05 # [Msol]
plx_err = 0.12 # [mas]

MCMC parameters
num_temps = 5
num_walkers = 20
num_threads = 2 # or a different number if you prefer, mp.cpu_count() for example

my_driver = driver.Driver(
filename,
"MCMC",
num_secondary_bodies,
total_mass,
plx,
mass_err=mass_err,
plx_err=plx_err,
mcmc_kwargs={

"num_temps": num_temps,
"num_walkers": num_walkers,
"num_threads": num_threads,

},
)

18 Chapter 2. User Guide:

orbitize Documentation

Running the MCMC Sampler

We need to pick how many steps the MCMC sampler should sample. Additionally, because the samples are correlated,
we often only save every nth sample. This helps when we run a lot of samples, because saving all the samples requires
too much disk space and many samples are unnecessary because they are correlated.

[3]: total_orbits = 6000 # number of steps x number of walkers (at lowest temperature)
burn_steps = 10 # steps to burn in per walker
thin = 2 # only save every 2nd step

my_driver.sampler.run_sampler(total_orbits, burn_steps=burn_steps, thin=thin)

/home/sblunt/Projects/orbitize/orbitize/priors.py:354: RuntimeWarning: invalid value␣
→˓encountered in log
lnprob = -np.log((element_array*normalizer))

/home/sblunt/Projects/orbitize/orbitize/priors.py:463: RuntimeWarning: invalid value␣
→˓encountered in log
lnprob = np.log(np.sin(element_array)/normalization)

Starting Burn in

/home/sblunt/Projects/orbitize/orbitize/priors.py:354: RuntimeWarning: invalid value␣
→˓encountered in log
lnprob = -np.log((element_array*normalizer))

/home/sblunt/Projects/orbitize/orbitize/priors.py:463: RuntimeWarning: invalid value␣
→˓encountered in log
lnprob = np.log(np.sin(element_array)/normalization)

10/10 steps of burn-in complete
Burn in complete. Sampling posterior now.
300/300 steps completed
Run complete

[3]: <ptemcee.sampler.Sampler at 0x7f5ef52163d0>

After completing the samples, the 'run_sampler'method also creates a 'Results' object that can be accessed with
'my_sampler.results'.

MCMC Convergence

We want our walkers to be “converged” before they accurately sample the full posterior of our fitted parameters. Formal
proofs of MCMC convergence are difficult or impossible in some cases. Many tests of convergence are necesary but
not sufficient proofs of convergence. Here, we provide some convience functions to help assess convergence, but we
caution they are not foolproof. A more detailed description of convergence analysis for affine-invariant samples (which
are the ones used in orbitize!) is available in the ``emcee` docs <https://emcee.readthedocs.io/en/stable/tutorials/
autocorr/>`__.

One of the primary ways we assess convergence for orbit fits for MCMC is the visual inspection of the chains. This is
done by looking at some key parameters such as semi-major axis and eccentricity and plotting the value sampled for each
chain as a function of step number. At the beginning, the ensemble of walkers is going to expand/contract/wiggle around
to figure out where the posterior space is. Eventually, the walkers will appear to reach some “thermal equilibrium”
beyond which the values sampled by the ensemble of walkers appear to not change with time. Below is how to use
some built-in diagnostic functions for this.

2.2. Tutorials 19

https://emcee.readthedocs.io/en/stable/tutorials/autocorr/
https://emcee.readthedocs.io/en/stable/tutorials/autocorr/

orbitize Documentation

Diagnostic Functions

The Sampler object also has two convenience functions to examine and modify the walkers in order to diagnose MCMC
performance. Note that in this example we have not run things for long enough with enough walkers to actually see
convergence, so this is merely a demo of the API.

First, we can examine 5 randomly selected walkers for two parameters: semimajor axis and eccentricity. We expect
150 steps per walker since there were 6,000 orbits requested with 20 walkers, so that’s 300 orbits per walker. However,
we have thinned by a factor of 2, so there are 150 saved steps.

[4]: sma_chains, ecc_chains = my_driver.sampler.examine_chains(
param_list=["sma1", "ecc1"], n_walkers=5

)

20 Chapter 2. User Guide:

orbitize Documentation

This method returns one matplotlib Figure object for each parameter. If no param_list given, all parameters are
returned. Here, we told it to plot 5 randomly selected walkers but we could have specified exactly which walkers with
the walker_list keyword. The step_range keyword also determines which steps in the chain are plotted (when
nothing is given, the default is to plot all steps). We can also have these plots automatically generate if we called
run_sampler with examine_chains=True.

Note that this is just a convenience function. It is possible to recreate these chains from reshaping the posterior samples
and selecting the correct entries.

The second diagnostic tool is the chop_chains, which allows us to remove entries from the beginning and/or end
of a chain. This updates the corresponding Results object stored in sampler (in this case, my_driver.sampler.
results). The burn parameter specifies the number of steps to remove from the beginning (i.e. to add a burn-in to
your chain) and the trim parameter specifies the number of steps to remove from the end. If only one parameter is
given, it is assumed to be a burn value. If trim is not zero, the sampler object is also updated so that the current
position (sampler.curr_pos) matches the new end point. This allows us to continue MCMC runs at the correct
position, even if we have removed the last few steps of the chain.

Let’s remove the first and last 25 steps, leaving 100 orbits (or steps) per walker

[5]: my_driver.sampler.chop_chains(burn=25, trim=25)

Chains successfully chopped. Results object updated.

Now we can examine the chains again to verify what we did. Note that the number of steps removed from either end
of the chain is uniform across all walkers.

2.2. Tutorials 21

orbitize Documentation

[6]: sma_chains, ecc_chains = my_driver.sampler.examine_chains(
param_list=["sma1", "ecc1"], n_walkers=5, transparency=0.5

)

22 Chapter 2. User Guide:

orbitize Documentation

Autocorrelation Time Estimation

We can use the emcee package to estimate the autocorrelation time from our chains.

The integrated autocorrelation time (𝜏) for each parameter is returned, with an estimate of ∼ 10-15 steps needed for
the chain to “forget” where it started. Notice an AutocorrError is returned since we have not run our chain long
enough. Therefore, we should treat the integrated autocorrelation time as a lower bound, and run the MCMC for more
steps. Here is a tutorial from emcee that estimates a more accurate integrated autocorrelation time when the chains are
properly converged.

[]: import emcee

flatchain = my_driver.sampler.post
total_samples, n_params = flatchain.shape
n_steps = int(total_samples / num_walkers)
chn = flatchain.reshape(num_walkers, n_steps, n_params)
For emcee, reshape to (n_steps, num_walkers, n_params)
chn = np.transpose(chn, axes=(1, 0, 2))

try:
tau = emcee.autocorr.integrated_time(chn)

except Exception as e:
print("Exception was raised! The error message is: \n \n{}".format(e))

2.2. Tutorials 23

https://emcee.readthedocs.io/en/stable/user/autocorr/
https://github.com/dfm/emcee/blob/main/docs/tutorials/line.ipynb

orbitize Documentation

Exception was raised! The error message is:

The chain is shorter than 50 times the integrated autocorrelation time for 8␣
→˓parameter(s). Use this estimate with caution and run a longer chain!
N/50 = 3;
tau: [11.72814516 12.47675593 13.46492791 13.94748748 12.62859548 12.64879897
12.94860228 13.10522437]

Plotting Basics

We will make some basic plots to visualize the samples in 'my_driver.sampler.results'. Orbitize currently has
two basic plotting functions which return matplotlib Figure objects. First, we can make a corner plot (also known as
triangle plot, scatterplot matrix, or pairs plot) to visualize correlations between pairs of orbit parameters:

[7]: corner_plot_fig = (
my_driver.sampler.results.plot_corner()

) # Creates a corner plot and returns Figure object
corner_plot_fig.savefig(

"my_corner_plot.png"
) # This is matplotlib.figure.Figure.savefig()

24 Chapter 2. User Guide:

orbitize Documentation

Next, we can plot a visualization of a selection of orbits sampled by our sampler. By default, the first epoch plotted is
the year 2000 and 100 sampled orbits are displayed.

[8]: epochs = my_driver.system.data_table["epoch"]

orbit_plot_fig = my_driver.sampler.results.plot_orbits(
object_to_plot=1, # Plot orbits for the first (and only, in this case) companion
num_orbits_to_plot=100, # Will plot 100 randomly selected orbits of this companion
start_mjd=epochs[0], # Minimum MJD for colorbar (here we choose first data epoch)

)
orbit_plot_fig.savefig(

"my_orbit_plot.png"
) # This is matplotlib.figure.Figure.savefig()

2.2. Tutorials 25

orbitize Documentation

<Figure size 1400x600 with 0 Axes>

For more advanced plotting options and suggestions on what to do with the returned matplotlib Figure objects, see the
dedicated Plotting tutorial.

Saving and Loading Results

We will save the results in the HDF5 format. It will save two datasets: 'post' which will contain the posterior (the
chains of the lowest temperature walkers) and 'lnlike' which has the corresponding probabilities. In addition, it
saves 'sampler_name' and the orbitize version number as attributes of the HDF5 root group, and the orbitize.
system.System object used to generate the orbit fit.

[9]: hdf5_filename = "my_posterior.hdf5"
import os

To avoid weird behaviours, delete saved file if it already exists from a previous run␣
→˓of this notebook
if os.path.isfile(hdf5_filename):

os.remove(hdf5_filename)
my_driver.sampler.results.save_results(hdf5_filename)

Saving sampler results is a good idea when we want to analyze the results in a different script or when we want to save
the output of a long MCMC run to avoid having to re-run it in the future. We can then load the saved results into a new
blank results object.

[10]: from orbitize import results

loaded_results = results.Results() # Create blank results object for loading
loaded_results.load_results(hdf5_filename)

Instead of loading results into an orbitize.results.Results object, we can also directly access the saved data using the
'h5py' python module.

[11]: import h5py

(continues on next page)

26 Chapter 2. User Guide:

orbitize Documentation

(continued from previous page)

filename = "my_posterior.hdf5"
hf = h5py.File(filename, "r") # Opens file for reading
Load up each dataset from hdf5 file
sampler_name = str(hf.attrs["sampler_name"])
post = np.array(hf.get("post"))
lnlike = np.array(hf.get("lnlike"))
hf.close() # Don't forget to close the file

2.2.5 Modifying Priors

by Sarah Blunt (2018)

Most often, you will use the Driver class to interact with orbitize. This class automatically reads your input file,
creates all of the orbitize objects you need to run an orbit fit, and allows you to run the orbit fit. See the introductory
OFTI and MCMC tutorials for examples of working with this class.

However, sometimes you will want to work with the underlying methods directly. Doing this gives you control over the
functionality Driver executes automatically, and allows you more flexibility.

Modifying priors is an example of something you might want to use the underlying API for. This tutorial walks you
through how to do that.

Goals of this tutorial: - Learn to modify priors in orbitize - Learn how to fix a parameter at a specific value - Learn
about the structure of the orbitize code base

[1]: import numpy as np
from matplotlib import pyplot as plt
import orbitize
from orbitize import read_input, system, priors, sampler

Read in Data

First, let’s read in our data table. This is accomplished with orbitize.read_input:

[2]: data_table = read_input.read_file('{}/GJ504.csv'.format(orbitize.DATADIR))

print(data_table)

epoch object quant1 quant1_err ... quant12_corr quant_type instrument
-------------- ------ ------ ---------- ... ------------ ---------- ----------

55645.95 1 2479.0 16.0 ... nan seppa defsp
55702.89 1 2483.0 8.0 ... nan seppa defsp
55785.015 1 2481.0 33.0 ... nan seppa defsp
55787.935 1 2448.0 24.0 ... nan seppa defsp

55985.19400184 1 2483.0 15.0 ... nan seppa defsp
56029.11400323 1 2487.0 8.0 ... nan seppa defsp
56072.30200459 1 2499.0 26.0 ... nan seppa defsp

2.2. Tutorials 27

orbitize Documentation

Initialize System Object

Next, we initialize an orbitize.system.System object. This object stores information about the system you’re
fitting, such as your data, the total mass, and the parallax.

[3]: # number of secondary bodies in system
num_planets = 1

total mass & error [msol]
total_mass = 1.22
mass_err = 0.08

parallax & error[mas]
plx = 56.95
plx_err = 0

sys = system.System(
num_planets, data_table, total_mass,
plx, mass_err=mass_err, plx_err=plx_err

)

The System object has a few handy attributes to help you keep track of your fitting parameters. System.labels is a
list of the names of your fit parameters, and System.sys_priors is a list of the priors on each parameter. Notice that
the “prior” on parallax (plx) is just a float. That’s because we fixed this parameter at the printed value by specifying
that plx_err=0.

Finally, System.param_idx is a dictionary that maps the parameter names from System.labels to their indices in
System.sys_priors.

[4]: print(sys.labels)
print(sys.sys_priors)
print(sys.param_idx)

alias for convenience
lab = sys.param_idx

['sma1', 'ecc1', 'inc1', 'aop1', 'pan1', 'tau1', 'plx', 'mtot']
[Log Uniform, Uniform, Sine, Uniform, Uniform, Uniform, 56.95, Gaussian]
{'sma1': 0, 'ecc1': 1, 'inc1': 2, 'aop1': 3, 'pan1': 4, 'tau1': 5, 'plx': 6, 'mtot': 7}

Explore & Modify Priors

Priors in orbitize are Python objects. You can view an exhaustive list here. Let’s print out the attributes of some of
our priors:

[5]: print(vars(sys.sys_priors[lab['ecc1']]))
print(vars(sys.sys_priors[lab['sma1']]))

{'minval': 0.0, 'maxval': 1.0}
{'minval': 0.001, 'maxval': 10000.0, 'logmin': -6.907755278982137, 'logmax': 9.
→˓210340371976184}

Check out the priors documentation (linked above) for more info about the attributes of each of these priors.

Now that we understand how priors are represented and where they are stored, we can modify them! Here’s an example
of changing the prior on eccentricity from the current uniform prior to a Gaussian prior:

28 Chapter 2. User Guide:

https://orbitize.readthedocs.io/en/latest/priors.html

orbitize Documentation

[6]: mu = 0.2
sigma = 0.05

sys.sys_priors[lab['ecc1']] = priors.GaussianPrior(mu, sigma)

print(sys.labels)
print(sys.sys_priors)
print(vars(sys.sys_priors[lab['ecc1']]))

['sma1', 'ecc1', 'inc1', 'aop1', 'pan1', 'tau1', 'plx', 'mtot']
[Log Uniform, Gaussian, Sine, Uniform, Uniform, Uniform, 56.95, Gaussian]
{'mu': 0.2, 'sigma': 0.05, 'no_negatives': True}

Let’s do one more example. Say we want to fix the inclination to a particular value (i.e. not allow it to vary in the fit at
all), perhaps the known inclination value of a disk in the system. We can do that as follows:

[7]: sys.sys_priors[lab['inc1']] = 2.5

print(sys.labels)
print(sys.sys_priors)
print('Inclination "prior:" {}'.format(sys.sys_priors[sys.param_idx['inc1']]))
print('Eccentricity prior: {}'.format(sys.sys_priors[sys.param_idx['ecc1']]))

['sma1', 'ecc1', 'inc1', 'aop1', 'pan1', 'tau1', 'plx', 'mtot']
[Log Uniform, Gaussian, 2.5, Uniform, Uniform, Uniform, 56.95, Gaussian]
Inclination "prior:" 2.5
Eccentricity prior: Gaussian

Run OFTI

All right! We’re in business. To finish up, I’ll demonstrate how to run an orbit fit with our modified System object,
first with OFTI, then with MCMC.

[8]: ofti_sampler = sampler.OFTI(sys)

number of orbits to accept
n_orbs = 500

_ = ofti_sampler.run_sampler(n_orbs)

plt.figure()
accepted_eccentricities = ofti_sampler.results.post[:, lab['ecc1']]
plt.hist(accepted_eccentricities)
plt.xlabel('ecc'); plt.ylabel('number of orbits')

plt.figure()
accepted_inclinations = ofti_sampler.results.post[:, lab['inc1']]
plt.hist(accepted_inclinations)
plt.xlabel('inc'); plt.ylabel('number of orbits')

[8]: Text(0, 0.5, 'number of orbits')

2.2. Tutorials 29

orbitize Documentation

Run MCMC

[9]: # number of temperatures & walkers for MCMC
num_temps = 3
num_walkers = 50

number of steps to take
n_orbs = 500

mcmc_sampler = sampler.MCMC(sys, num_temps, num_walkers)

number of orbits to accept
n_orbs = 500

_ = mcmc_sampler.run_sampler(n_orbs)

(continues on next page)

30 Chapter 2. User Guide:

orbitize Documentation

(continued from previous page)

accepted_eccentricities = mcmc_sampler.results.post[:, lab['ecc1']]
plt.hist(accepted_eccentricities)
plt.xlabel('ecc'); plt.ylabel('number of orbits')

Starting Burn in

Burn in complete. Sampling posterior now.

/home/sblunt/Projects/orbitize/orbitize/priors.py:354: RuntimeWarning: invalid value␣
→˓encountered in log
lnprob = -np.log((element_array*normalizer))

10/10 steps completed
Run complete

[9]: Text(0, 0.5, 'number of orbits')

2.2.6 Advanced Plotting

by Henry Ngo (2018)

The results.py module contains several plotting functions to visualize the results of your orbitize orbit fit. Basic
uses of these functions are covered in the OFTI and MCMC tutorials. Here, we will examine these plotting functions
more deeply. This tutorial will be updated as more features are added to orbitize.

1. Test orbit generation with OFTI

In order to have sample data for this tutorial, we will use OFTI to generate some orbits for a published dataset on the GJ
504 system. The following code block is from the OFTI Tutorial , with 10000 orbits generated. Please see that tutorial
for details.

Note: If you have already run this tutorial and saved the computed orbits, you may skip to Section 3 and load
up your previously computed orbits instead of running this block below.

[2]: import orbitize.driver

(continues on next page)

2.2. Tutorials 31

https://orbitize.readthedocs.io/en/latest/tutorials/OFTI_tutorial.html
https://orbitize.readthedocs.io/en/latest/tutorials/MCMC_tutorial.html
https://orbitize.readthedocs.io/en/latest/tutorials/OFTI_tutorial.html

orbitize Documentation

(continued from previous page)

myDriver = orbitize.driver.Driver(
'{}/GJ504.csv'.format(orbitize.DATADIR), # relative or absolute path to data file
'OFTI', # name of algorithm for orbit-fitting
1, # number of secondary bodies in system
1.22, # total mass [M_sun]
56.95, # parallax of system [mas]
mass_err=0.08, # mass error [M_sun]
plx_err=0.26 # parallax error [mas]

)
s = myDriver.sampler
orbits = s.run_sampler(1000)

1000/1000 orbits found

2. Accessing a Results object with computed orbits

After computing your orbits from either OFTI or MCMC, they are accessible as a Results object for further analysis
and plotting. This object is an attribute of s, the sampler object defined above.

[3]: myResults = s.results # array of MxN array of orbital parameters (M orbits with N␣
→˓parameters per orbit)

It is also useful to save this Results object to a file if we want to load up the same data later without re-computing the
orbits.

[4]: myResults.save_results('plotting_tutorial_GJ504_results.hdf5')

For more information on the Results object, see below.

[5]: myResults?

Type: Results
String form: <orbitize.results.Results object at 0x7fbbbf884be0>
File: ~/Documents/GitHub/orbitize/orbitize/results.py
Docstring:
A class to store accepted orbital configurations from the sampler

Args:
system (orbitize.system.System): System object used to do the fit.
sampler_name (string): name of sampler class that generated these results

(default: None).
post (np.array of float): MxN array of orbital parameters

(posterior output from orbit-fitting process), where M is the
number of orbits generated, and N is the number of varying orbital
parameters in the fit (default: None).

lnlike (np.array of float): M array of log-likelihoods corresponding to
the orbits described in ``post`` (default: None).

version_number (str): version of orbitize that produced these results.
data (astropy.table.Table): output from ``orbitize.read_input.read_file()``
curr_pos (np.array of float): for MCMC only. A multi-D array of the

current walker positions that is used for restarting a MCMC sampler.

(continues on next page)

32 Chapter 2. User Guide:

orbitize Documentation

(continued from previous page)

Written: Henry Ngo, Sarah Blunt, 2018

API Update: Sarah Blunt, 2021

Note that you can also add more computed orbits to a results object with myResults.add_samples():

[6]: myResults.add_samples?

Signature: myResults.add_samples(orbital_params, lnlikes, curr_pos=None)
Docstring:
Add accepted orbits, their likelihoods, and the orbitize version number
to the results

Args:
orbital_params (np.array): add sets of orbital params (could be multiple)

to results
lnlike (np.array): add corresponding lnlike values to results
curr_pos (np.array of float): for MCMC only. A multi-D array of the

current walker positions

Written: Henry Ngo, 2018

API Update: Sarah Blunt, 2021
File: ~/Documents/GitHub/orbitize/orbitize/results.py
Type: method

3. (Optional) Load up saved results object

If you are skipping the generation of all orbits because you would rather load from a file that saved the Results object
generated above, then execute this block to load it up. Otherwise, skip this block (however, nothing bad will happen if
you run it even if you generated orbits above).

[7]: import orbitize.results
if 'myResults' in locals():

del myResults # delete existing Results object
myResults = orbitize.results.Results() # create empty Results object
myResults.load_results('plotting_tutorial_GJ504_results.hdf5') # load from file

4. Using our Results object to make plots

In this tutorial, we’ll work with two plotting functions: plot_corner() makes a corner plot and plot_orbits()
displays some or all of the computed orbits. Both plotting functions return matplotlib.pyplot.figure objects, which can
be displayed, further manipulated with matplotlib.pyplot functions, and saved.

[8]: %matplotlib inline
import matplotlib.pyplot as plt

2.2. Tutorials 33

orbitize Documentation

4.1 Corner plots

This function is a wrapper for corner.py and creates a display of the 2-D covariances between each pair of parameters
as well as histograms for each parameter. These plots are known as “corner plots”, “pairs plots”, and “scatterplot
matrices”, as well as other names.

[9]: corner_figure = myResults.plot_corner()

34 Chapter 2. User Guide:

orbitize Documentation

Choosing which parameters to plot

Sometimes, the full plot with all parameters is not what we want. Let’s use the param_list keyword argument to plot
only semimajor axis, eccentricity and inclination. Here are the possible string labels for this fit that you can enter for
param_list and the corresponding orbit fit parameter:

Label Parameter name
sma1 semimajor axis
ecc1 eccentricity
inc1 inclination
aop1 argument of periastron
pan1 position angle of nodes (aka longitude of ascending node)
tau1 epoch of periastron passage (expressed as a fraction of orbital period past a specified offset)
mtot system mass
plx system parallax

Note: for labels with numbers, the number corresponds to the companion (sma1 is the first object’s semimajor axis,
sma2 would be the second object, etc)

[10]: corner_figure_aei = myResults.plot_corner(param_list=['sma1','ecc1','inc1'])

2.2. Tutorials 35

orbitize Documentation

Limiting which samples to display

By picking out the panels we show, the plot can be easier to read. But in this case, we see that the plotted x-range on
semimajor axis does show the posterior very well. This function will pass on all corner.corner() keywords as well.
For example, we can use corner’s range keyword argument to limit the panels to only display 95% of the samples to
avoid showing the long tails in the distribution.

[11]: corner_figure_aei_95 = myResults.plot_corner(param_list=['sma1','ecc1','inc1'], range=(0.
→˓95,0.95,0.95))

For other keywords you can pass to corner, see the corner.py API.

36 Chapter 2. User Guide:

https://corner.readthedocs.io/en/latest/api.html

orbitize Documentation

Making single variable histogram plots

One use of the param_list keyword is to just plot the histogram for the distribution of one single orbit fit parameter.
We can do this by just providing one single parameter.

[12]: histogram_figure_sma1 = myResults.plot_corner(param_list=['sma1'], range=(0.95,))

Axis label customization

The axis labels seen on the above plots are the default labels that orbitize passes to corner.py to make these plots.
We can override these defaults by passing our own labels through the labels keyword parameter as per the corner.py
API.

Note that the length of the list of labels should match the number of parameters plotted.

[13]: # Corner plot with alternate labels
corner_figure_aei_95_labels = myResults.plot_corner(

param_list=['sma1','ecc1','inc1'],
range=(0.95,0.95,0.95),
labels=('SMA (AU)', 'eccen.', 'inc. (deg)')

)

2.2. Tutorials 37

https://corner.readthedocs.io/en/latest/api.html

orbitize Documentation

Overplotting best fit (“truth”) values

One feature of corner.py is to overplot the contours and histograms with a so-called “truth” value, which we can use
for many purposes. For example, if we are sampling from a known distribution, we can use it to plot the true value
to compare with our samples. Or, we can use it to mark the location of the mean or median of the distribution (the
histogram and contours make it easy to pick out the most likely value or peaks of the distribution but maybe not the
mean or median). Here is an example of overplotting the median on top of the distribution for the full corner plot.

[14]: import numpy as np
median_values = np.median(myResults.post,axis=0) # Compute median of each parameter
range_values = np.ones_like(median_values)*0.95 # Plot only 95% range for each parameter
corner_figure_median_95 = myResults.plot_corner(

range=range_values,
truths=median_values

)

38 Chapter 2. User Guide:

orbitize Documentation

Overall, we find that some of the parameters have converged well but others are not well constrained by our fit. As
mentioned above, the output of the plot_corner() methods are matplotlib Figure objects. So, if we wanted to save
this figure, we might use the savefig() method.

[15]: corner_figure_median_95.savefig('plotting_tutorial_corner_figure_example.png')

2.2. Tutorials 39

orbitize Documentation

4.2 Orbit Plot

The plot_orbits method in the Results module allows us to visualize the orbits sampled by orbitize!. The
default call to plot_orbits will draw 100 orbits randomly chosen out of the total orbits sampled (set by parameter
num_orbits_to_plot). In addition, to draw each of these orbits, by default, we will sample each orbit at 100 evenly
spaced points in time throughout the orbit’s orbital period (set by parameter num_epochs_to_plot). These points are
then connected by coloured line segments corresponding to the date where the object would be at that point in the orbit.
By default, orbits are plotted starting in the year 2000 (set by parameter start_mjd) and are drawn for one complete
orbital period. We usually choose to begin plotting orbits at the first data epoch, using this keyword as illustrated below.

[16]: epochs = myDriver.system.data_table['epoch']

orbit_figure = myResults.plot_orbits(
start_mjd=epochs[0] # Minimum MJD for colorbar (here we choose first data epoch)

)
orbit_figure.savefig('example_orbit_figure.png',dpi=250)

<Figure size 1008x432 with 0 Axes>

Customizing orbit plot appearence

In the above figure, we see that the x and y axes are RA and Dec offsets from the primary star in milliarcseconds.
By default the axes aspect ratio is square, but we can turn that off. This is normally not recommended but for some
situations, it may be desirable.

(Note: Each call to plot_orbits selects a different random subset of orbits to plot, so the orbits shown in the figures
here are not exactly the same each time).

[17]: orbit_figure_non_square = myResults.plot_orbits(
start_mjd=epochs[0],
square_plot=False

)

<Figure size 1008x432 with 0 Axes>

40 Chapter 2. User Guide:

orbitize Documentation

The colorbar shows how the line segment colors correspond to the date, beginning at the first data epoch. We can also
turn off the colourbar.

[18]: orbit_figure_no_colorbar = myResults.plot_orbits(
start_mjd=epochs[0],
show_colorbar=False

)

<Figure size 1008x432 with 0 Axes>

We can also modify the color and ending-epoch of the separation/position angle panels as follows:

[19]: orbit_figure_no_colorbar = myResults.plot_orbits(
start_mjd=epochs[0],
sep_pa_color='lightblue',
sep_pa_end_year = 2100.0

)

2.2. Tutorials 41

orbitize Documentation

<Figure size 1008x432 with 0 Axes>

Choosing how orbits are plotted

Plotting one hundred orbits may be too dense. We can set the number of orbits displayed to any other value.

[20]: orbit_figure_plot10 = myResults.plot_orbits(
start_mjd=epochs[0],
num_orbits_to_plot=10

)

<Figure size 1008x432 with 0 Axes>

We can also adjust how well we sample each of the orbits. By default, 100 evenly-spaced points are computed per
orbit, beginning at start_mjd and ending one orbital period later. Decreasing the sampling could lead to faster plot
generation but if it is too low, it might not correctly sample the orbit, as shown below.

42 Chapter 2. User Guide:

orbitize Documentation

[21]: orbit_figure_epochs10 = myResults.plot_orbits(
start_mjd=epochs[0],
num_epochs_to_plot=10,
num_orbits_to_plot=10

)

<Figure size 1008x432 with 0 Axes>

In this example, there is only one companion in orbit around the primary. When there are more than one, plot_orbits
will plot the orbits of the first companion by default and we would use the object_to_plot argument to choose a
different object (where 1 is the first companion).

4.3 Working with matplotlib Figure objects

The idea of the Results plotting functions is to create some basic plots and to return the matplotlib Figure object
so that we can do whatever else we may want to customize the figure. We should consult the matplotlib API for all
the details. Here, we will outline a few common tasks.

Let’s increase the font sizes for all of the text (maybe for a poster or oral presentation) using matplotlib.pyplot.
This (and other edits to the rcParams defaults) should be done before creating any figure objects.

[22]: plt.rcParams.update({'font.size': 16})

Now, we will start with creating a figure with only 5 orbits plotted, for simplicity, with the name orb_fig. This Figure
object has two axes, one for the orbit plot and one for the colorbar. We can use the .axes property to get a list of axes.
Here, we’ve named the two axes ax_orb and ax_cbar. With these three objects (orb_fig and ax_orb, and ax_cbar)
we can modify all aspects of our figure.

[23]: orb_fig = myResults.plot_orbits(start_mjd=epochs[0], num_orbits_to_plot=5)
ax_orb, ax_sep, ax_pa, ax_cbar = orb_fig.axes

<Figure size 1008x432 with 0 Axes>

2.2. Tutorials 43

https://matplotlib.org/api/index.html

orbitize Documentation

First, let’s try to add a figure title. We have two options. We can use the Figure’s suptitle method to add a title that
spans the entire figure (including the colorbar).

[24]: orb_fig.suptitle('5 orbits from GJ-504 fits') # Adds a title spanning the figure
orb_fig

[24]:

Alternatively, we can just add the title over the Ra/Dec axes instead.

[25]: orb_fig.suptitle('') # Clears previous title
ax_orb.set_title('5 orbits from GJ-504 fits') # sets title over Axes object only
orb_fig

44 Chapter 2. User Guide:

orbitize Documentation

[25]:

We can also change the label of the axes, now using matplotlib.Axes methods.

[26]: ax_orb.set_xlabel('Δ(Right Ascension, mas)')
ax_orb.set_ylabel('Δ(Declination, mas)')
orb_fig

[26]:

If we want to modify the colorbar axis, we need to access the ax_cbar object

ax_orb.set_xlabel(‘∆RA [mas]’) ax_orb.set_ylabel(‘∆Dec [mas]’) # go back to what we had before
ax_cbar.set_title(‘Year’) # Put a title on the colorbar orb_fig

We may want to add to the plot itself. Here’s an exmaple of putting an star-shaped point at the location of our primary
star.

[27]: ax_orb.plot(0,0,marker="*",color='black',markersize=10)
orb_fig

2.2. Tutorials 45

orbitize Documentation

[27]:

And finally, we can save the figure objects.

[28]: orb_fig.savefig('plotting_tutorial_plot_orbit_example.png')

2.2.7 MCMC vs OFTI Comparison

by Sarah Blunt, 2018

Welcome to the OFTI/MCMC comparison tutorial! This tutorial is meant to help you understand the differences
between OFTI and MCMC algorithms so you know which one to pick for your data.

Before we start, I’ll give you the short answer: for orbit fractions less than 5%, OFTI is generally faster to converge
than MCMC. This is not a hard-and-fast statistical rule, but I’ve found it to be a useful guideline.

This tutorial is essentially an abstract of Blunt et al (2017). To dig deeper, I encourage you to read the paper (Sections
2.2-2.3 in particular).

Goals of This Tutorial: - Understand qualitatively why OFTI converges faster than MCMC for certain datasets. -
Learn to make educated choices of backend algorithms for your own datasets.

Prerequisites: - This tutorial assumes knowledge of the orbitize API. Please go through at least the OFTI and
MCMC introduction tutorials before this one. - This tutorial also assumes a qualitative understanding of OFTI and
MCMC algorithms. I suggest you check out at least Section 2.1 of Blunt et al (2017) and this blog post before attempting
to decode this tutorial.

Jargon: - I will often use orbit fraction, or the fraction of the orbit spanned by the astrometric observations, as a
figure of merit. In general, OFTI will converge faster than MCMC for small orbit fractions. - Convergence is defined
differently for OFTI and for MCMC (see the OFTI paper for details). An OFTI run needs to accept a statistically large
number of orbits for convergence, since each accepted orbit is independent of all others. For MCMC, convergence
is a bit more complicated. At a high level, an MCMC run has converged when all walkers have explored the entire
parameter space. There are several metrics for estimating MCMC convergence (e.g. GR statistic, min Tz statistic), but
we’ll just estimate convergence qualitatively in this tutorial.

[1]: import numpy as np
import matplotlib.pyplot as plt

(continues on next page)

46 Chapter 2. User Guide:

https://ui.adsabs.harvard.edu/#abs/2017AJ....153..229B/abstract
https://orbitize.readthedocs.io/en/latest/tutorials/OFTI_tutorial.html
https://orbitize.readthedocs.io/en/latest/tutorials/MCMC_tutorial.html
https://ui.adsabs.harvard.edu/#abs/2017AJ....153..229B/abstract
https://jeremykun.com/2015/04/06/markov-chain-monte-carlo-without-all-the-bullshit/

orbitize Documentation

(continued from previous page)

import astropy.table
import time

np.random.seed(5)

from orbitize.kepler import calc_orbit
from orbitize import system, sampler
from orbitize.read_input import read_file

Generate Synthetic Data

Let’s start by defining a function to generate synthetic data. This will allow us to easily test convergence speeds for
different orbit fractions. I’ll include the number of observations and the noise magnitude as keywords; I encourage you
to test out different values throughout the tutorial!

[2]: mtot = 1.2 # total system mass [M_sol]
plx = 60.0 # parallax [mas]

def generate_synthetic_data(sma=30.0, num_obs=4, unc=10.0):
"""Generate an orbitize-table of synethic data

Args:
sma (float): semimajor axis (au)
num_obs (int): number of observations to generate
unc (float): uncertainty on all simulated RA & Dec measurements (mas)

Returns:
2-tuple:

- `astropy.table.Table`: data table of generated synthetic data
- float: the orbit fraction of the generated data

"""

assumed ground truth for non-input orbital parameters
ecc = 0.5 # eccentricity
inc = np.pi / 4 # inclination [rad]
argp = 0.0
lan = 0.0
tau = 0.8

calculate RA/Dec at three observation epochs
observation_epochs = np.linspace(

51550.0, 52650.0, num_obs
) # `num_obs` epochs between ~2000 and ~2003 [MJD]
num_obs = len(observation_epochs)
ra, dec, _ = calc_orbit(

observation_epochs, sma, ecc, inc, argp, lan, tau, plx, mtot
)

add Gaussian noise to simulate measurement
ra += np.random.normal(scale=unc, size=num_obs)

(continues on next page)

2.2. Tutorials 47

orbitize Documentation

(continued from previous page)

dec += np.random.normal(scale=unc, size=num_obs)

define observational uncertainties
ra_err = dec_err = np.ones(num_obs) * unc

make a plot of the data
plt.figure()
plt.errorbar(ra, dec, xerr=ra_err, yerr=dec_err, linestyle="")
plt.xlabel("$\\Delta$ RA")
plt.ylabel("$\\Delta$ Dec")

calculate the orbital fraction
period = np.sqrt((sma**3) / mtot)
orbit_coverage = (

max(observation_epochs) - min(observation_epochs)
) / 365.25 # [yr]
orbit_fraction = 100 * orbit_coverage / period

data_table = astropy.table.Table(
[observation_epochs, [1] * num_obs, ra, ra_err, dec, dec_err],
names=("epoch", "object", "raoff", "raoff_err", "decoff", "decoff_err"),

)
read into orbitize format
data_table = read_file(data_table)

return data_table, orbit_fraction

Short Orbit Fraction

Let’s use the function above to generate some synthetic data with a short orbit fraction, and fit it with OFTI:

[3]: # generate data with default kwargs
short_data_table, short_orbit_fraction = generate_synthetic_data()
print("The orbit fraction is {}%".format(np.round(short_orbit_fraction), 1))

initialize orbitize `System` object
short_system = system.System(1, short_data_table, mtot, plx)

num2accept = 500 # run sampler until this many orbits are accepted

The orbit fraction is 2.0%

48 Chapter 2. User Guide:

orbitize Documentation

[4]: start_time = time.time()

set up OFTI `Sampler` object
short_OFTI_sampler = sampler.OFTI(short_system)

perform OFTI fit
short_OFTI_orbits = short_OFTI_sampler.run_sampler(num2accept)

print(
"OFTI took {} seconds to accept {} orbits.".format(

time.time() - start_time, num2accept
)

)

Converting ra/dec data points in data_table to sep/pa. Original data are stored in input_
→˓table.
497/500 orbits found

KeyboardInterrupt Traceback (most recent call last)
Input In [4], in <cell line: 7>()

4 short_OFTI_sampler = sampler.OFTI(short_system)
6 # perform OFTI fit

----> 7 short_OFTI_orbits = short_OFTI_sampler.run_sampler(num2accept)
9 print(
10 "OFTI took {} seconds to accept {} orbits.".format(
11 time.time() - start_time, num2accept
12)
13)

File ~/Documents/GitHub/orbitize/orbitize/sampler.py:593, in OFTI.run_sampler(self,␣
→˓total_orbits, num_samples, num_cores, OFTI_warning)
588 OFTI_warning = None
589 print(
590 str(orbits_saved.value) + "/" + str(total_orbits) + " orbits found",
591 end="\r",

(continues on next page)

2.2. Tutorials 49

orbitize Documentation

(continued from previous page)

592)
--> 593 time.sleep(0.1)

595 print(
596 str(total_orbits) + "/" + str(total_orbits) + " orbits found", end="\r"
597)
599 # join the processes

KeyboardInterrupt:

[]: start_time = time.time()

set up MCMC `Sampler` object
num_walkers = 20
short_MCMC_sampler = sampler.MCMC(short_system, num_temps=5, num_walkers=num_walkers)

perform MCMC fit
num2accept_mcmc = 10 * num2accept
_ = short_MCMC_sampler.run_sampler(num2accept_mcmc, burn_steps=100)
short_MCMC_orbits = short_MCMC_sampler.results.post

print(
"MCMC took {} steps in {} seconds.".format(

num2accept_mcmc, time.time() - start_time
)

)

[]: plt.hist(
short_OFTI_orbits[:, short_system.param_idx["ecc1"]],
bins=40,
density=True,
alpha=0.5,
label="OFTI",

)
plt.hist(

short_MCMC_orbits[:, short_system.param_idx["ecc1"]],
bins=40,
density=True,
alpha=0.5,
label="MCMC",

)

plt.xlabel("Eccentricity")
plt.ylabel("Prob.")
plt.legend()

These distributions are different because the MCMC chains have not converged, resulting in a “lumpy” MCMC dis-
tribution. I set up the calculation so that MCMC would return 10x as many orbits as OFTI, but even so, the OFTI
distribution is a much better representation of the underlying PDF.

If we run the MCMC algorithm for a greater number of steps (and/or increase the number of walkers and/or tempera-
tures), the MCMC and OFTI distributions will become indistinguishable. OFTI is NOT more correct than MCMC,
but for this dataset, OFTI converges on the correct posterior faster than MCMC.

50 Chapter 2. User Guide:

orbitize Documentation

Longer Orbit Fraction

Let’s now repeat this exercise with a longer orbit fraction. For this dataset, OFTI will have to run for several seconds
just to accept one orbit, so we won’t compare the resulting posteriors.

[]: # generate data
long_data_table, long_orbit_fraction = generate_synthetic_data(sma=10, num_obs=5)
print("The orbit fraction is {}%".format(np.round(long_orbit_fraction), 1))

initialize orbitize `System` object
long_system = system.System(1, long_data_table, mtot, plx)
num2accept = 500 # run sampler until this many orbits are accepted

[]: start_time = time.time()

set up OFTI `Sampler` object
long_OFTI_sampler = sampler.OFTI(long_system)

perform OFTI fit
long_OFTI_orbits = long_OFTI_sampler.run_sampler(1)

print("OFTI took {} seconds to accept 1 orbit.".format(time.time() - start_time))

[]: start_time = time.time()

set up MCMC `Sampler` object
num_walkers = 20
long_MCMC_sampler = sampler.MCMC(long_system, num_temps=10, num_walkers=num_walkers)

perform MCMC fit
_ = long_MCMC_sampler.run_sampler(num2accept, burn_steps=100)
long_MCMC_orbits = long_MCMC_sampler.results.post

print("MCMC took {} steps in {} seconds.".format(num2accept, time.time() - start_time))

[]: plt.hist(long_MCMC_orbits[:, short_system.param_idx["ecc1"]], bins=15, density=True)
plt.xlabel("Eccentricity")
plt.ylabel("Prob.")

It will take more steps for this MCMC to fully converge (see the MCMC tutorial for more detailed guidelines), but you
can imagine that MCMC will converge much faster than OFTI for this dataset.

Closing Thoughts

If you play around with the num_obs, sma, and unc keywords in the generate_synthetic_data function and repeat
this exercise, you will notice that the OFTI acceptance rate and MCMC convergence rate depend on many variables,
not just orbit fraction. In truth, the Gaussianity of the posterior space determines how quickly an MCMC run
will converge, and its similarity to the prior space determines how quickly an OFTI run will converge. In other
words, the more constrained your posteriors are (relative to your priors), the quicker MCMC will converge, and
the slower OFTI will run.

Orbit fraction is usually a great tracer of this “amount of constraint,” but it’s good to understand why!

2.2. Tutorials 51

https://orbitize.readthedocs.io/en/latest/tutorials/MCMC_tutorial.html

orbitize Documentation

Summary: - OFTI and MCMC produce the same posteriors, but often take differing amounts of time to converge on
the correct solution. - OFTI is superior when your posteriors are similar to your priors, and MCMC is superior when
your posteriors are highly constrained Gaussians.

2.2.8 Modifying MCMC Initial Positions

by Henry Ngo (2019) & Sarah Blunt (2021) & Mireya Arora (2021)

When you set up the MCMC Sampler, the initial position of your walkers are randomly determined. Specifically, they
are uniformly distributed in your Prior phase space. This tutorial will show you how to change this default behaviour
so that the walkers can begin at locations you specify. For instance, if you have an initial guess for the best fitting orbit
and want to use MCMC to explore posterior space around this peak, you may want to start your walkers at positions
centered around this peak and distributed according to an N-dimensional Gaussian distribution.

Note: This tutorial is meant to be read after reading the MCMC Introduction tutorial. If you are wondering what
walkers are, you should start there!

The Driver class is the main way you might interact with orbitize! as it automatically reads your input, creates all
the orbitize! objects needed to do your calculation, and defaults to some commonly used parameters or settings.
However, sometimes you want to work directly with the underlying API to do more advanced tasks such as changing
the MCMC walkers’ initial positions, or modifying the priors.

This tutorial walks you through how to do that.

Goals of this tutorial: - Learn to modify the MCMC Sampler object - Learn about the structure of the orbitize
code base

Import modules

[1]: import numpy as np
from scipy.optimize import minimize as mn
import orbitize
from orbitize import driver
import multiprocessing as mp

1) Create Driver object

First, let’s begin as usual and create our Driver object, as in the MCMC Introduction tutorial.

[2]: filename = "{}/GJ504.csv".format(orbitize.DATADIR)

system parameters
num_secondary_bodies = 1
total_mass = 1.75 # [Msol]
plx = 51.44 # [mas]
mass_err = 0.05 # [Msol]
plx_err = 0.12 # [mas]

MCMC parameters
num_temps = 5
num_walkers = 30
num_threads = mp.cpu_count() # or a different number if you prefer

(continues on next page)

52 Chapter 2. User Guide:

https://orbitize.readthedocs.io/en/latest/tutorials/MCMC_tutorial.html
https://orbitize.readthedocs.io/en/latest/tutorials/Modifying_Priors.html

orbitize Documentation

(continued from previous page)

my_driver = driver.Driver(
filename,
"MCMC",
num_secondary_bodies,
total_mass,
plx,
mass_err=mass_err,
plx_err=plx_err,
mcmc_kwargs={

"num_temps": num_temps,
"num_walkers": num_walkers,
"num_threads": num_threads,

},
)

2) Access the Sampler object to view the walker positions

As mentioned in the introduction, the Driver class creates the objects needed for the orbit fit. At the time of this
writing, it creates a Sampler object which you can access with the .sampler attribute and a System object which you
can access with the .system attribute.

The Sampler object contains all of the information used by the orbit sampling algorithm (OFTI or MCMC) to fit
the orbit and determine the posteriors. The System object contains information about the astrophysical system itself
(stellar and companion parameters, the input data, etc.).

To see all of the attributes of the driver object, you can use dir().

[3]: print(dir(my_driver))

['__class__', '__delattr__', '__dict__', '__dir__', '__doc__', '__eq__', '__format__', '_
→˓_ge__', '__getattribute__', '__gt__', '__hash__', '__init__', '__init_subclass__', '__
→˓le__', '__lt__', '__module__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__
→˓repr__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__', '__weakref__',
→˓'sampler', 'system']

This returns many other functions too, but you see sampler and system at the bottom. Don’t forget that in Jupyter
notebooks, you can use my_driver? to get the docstring for its class (i.e. the Driver class) and my_driver?? to get
the full source code of that class. You can also get this information in the API documentation.

Now, let’s list the attributes of the my_driver.sampler attribute.

[4]: print(dir(my_driver.sampler))

['__abstractmethods__', '__class__', '__delattr__', '__dict__', '__dir__', '__doc__', '__
→˓eq__', '__format__', '__ge__', '__getattribute__', '__gt__', '__hash__', '__init__', '_
→˓_init_subclass__', '__le__', '__lt__', '__module__', '__ne__', '__new__', '__reduce__',
→˓ '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__slots__', '__str__', '__
→˓subclasshook__', '__weakref__', '_abc_impl', '_fill_in_fixed_params', '_logl', '_
→˓update_chains_from_sampler', 'check_prior_support', 'chi2_type', 'chop_chains', 'curr_
→˓pos', 'custom_lnlike', 'examine_chains', 'fixed_params', 'has_corr', 'lnlike', 'num_
→˓params', 'num_temps', 'num_threads', 'num_walkers', 'priors', 'results', 'run_sampler',
→˓ 'sampled_param_idx', 'system', 'use_pt', 'validate_xyz_positions']

2.2. Tutorials 53

orbitize Documentation

Again, you can use the ? and ?? features as well as the API documentation to find out more. Here we see an attribute
curr_poswhich contains the current position of all the walkers for the MCMC sampler. These positions were generated
upon initialization of the Sampler object, which happened as part of the initialization of the Driver object.

Examine my_driver.sampler.curr_pos

curr_pos is an array and has shape (n_temps, n_walkers, n_params) for the parallel-tempered MCMC sampler and
shape (n_walkers, n_params) for the affine-invariant ensemble sampler.

[5]: my_driver.sampler.curr_pos.shape # Here we are using the parallel-tempered MCMC sampler

[5]: (5, 30, 8)

Basically, this is the same shape as the output of the Sampler. Let’s look at the start position of the first five walkers at
the lowest temperature, to get a better sense of what the strucutre is like.

[6]: print(my_driver.sampler.curr_pos[0, 0:5, :])

[[6.95236402e+03 2.32633596e-01 1.60836175e+00 1.14721977e+00
5.34421956e+00 2.67696018e-01 5.13656024e+01 1.80562444e+00]

[7.98190639e-02 1.40596874e-01 2.63470503e+00 4.35734182e+00
2.28246569e-01 4.75070744e-01 5.13486020e+01 1.77552365e+00]

[1.60516586e-03 8.80915694e-01 2.28799219e+00 2.34160551e+00
3.54811275e+00 9.29570443e-01 5.14765240e+01 1.72740379e+00]

[1.19498384e+00 4.70033780e-01 1.15697304e+00 5.15452767e+00
2.26789404e+00 2.79424283e-01 5.13693594e+01 1.70312991e+00]

[1.63550027e-03 3.26684316e-01 1.71079639e+00 4.00183596e+00
1.81830795e+00 2.93151051e-01 5.16095100e+01 1.73093287e+00]]

3) Replace curr_pos with your own initial positions for walkers

When the sampler is run with the sampler.run_sampler() method, it will start the walkers at the curr_pos values,
run the MCMC forward for the given number of steps, and then update curr_pos to reflect where the walkers ended
up. The next time run_sampler() is called, it does the same thing again.

Here, you have just created the sampler but have not run it yet. So, if you update curr_pos with our own custom start
locations, when you run the sampler, it will begin at your custom start locations instead.

3.1) Generate your own initial positions

There are many ways to create your own walker start distribution and what you want to do will depend on your science
question and prior knowledge.

If you have already generated and validated your own initial walker positions, you can skip down to the “Update sampler
position”. Some users use the output of OFTI or a previous MCMC run as the initial position.

If you need to generate your own positions, read on. Here, let’s assume you know a possible best fit value and your
uncertainty in that fit. Perhaps you got this through a least squares minimization. So, let’s create a distribution of
walkers that are centered on the best fit value and distributed normallly with the 1-sigma in each dimension equal to
the uncertainty on that best fit value.

First, let’s define the best fit value and the spread. As a reminder, the order of the parameters in the array is (for a single
planet-star system): semimajor axis, eccentricity, inclination, argument of periastron, position angle of nodes, epoch
of periastron passage, parallax and total mass. You can check the indices with this dict in the system object.

54 Chapter 2. User Guide:

orbitize Documentation

[7]: print(my_driver.system.param_idx)

{'sma1': 0, 'ecc1': 1, 'inc1': 2, 'aop1': 3, 'pan1': 4, 'tau1': 5, 'plx': 6, 'mtot': 7}

[8]: # Set centre and spread of the walker distribution
Values from Table 1 in Blunt et al. 2017, AJ, 153, 229
sma_cen = 44.48
sma_sig = 15.0
ecc_cen = 0.0151
ecc_sig = 0.175
inc_cen = 2.30 # (131.7 deg)
inc_sig = 0.279 # (16.0 deg)
aop_cen = 1.60 # (91.7 deg)
aop_sig = 1.05 # (60.0 deg)
pan_cen = 2.33 # (133.7 deg)
pan_sig = 0.872 # (50.0 deg)
tau_cen = 0.77 # (2228.11 yr)
tau_sig = 0.65 # (121.0 yr)

Note : parallax and stellar mass already defined above (plx, plx_err, total_mass, mass_
→˓err)
walker_centres = np.array(

[sma_cen, ecc_cen, inc_cen, aop_cen, pan_cen, tau_cen, plx, total_mass]
)
walker_1sigmas = np.array(

[sma_sig, ecc_sig, inc_sig, aop_sig, pan_sig, tau_sig, plx_err, mass_err]
)

You can use numpy.random.standard_normal to generate normally distributed random numbers in the same shape
as your walker initial positions (my_driver.sampler.curr_pos.shape). Then, multiply by walker_1sigmas to
get the spread to match your desired distribution and add walker_centres to get the distribution centered on your
desired values.

[9]: curr_pos_shape = my_driver.sampler.curr_pos.shape # Get shape of walker positions

Draw from multi-variate normal distribution to generate new walker positions
new_pos = np.random.standard_normal(curr_pos_shape) * walker_1sigmas + walker_centres

3.2) Using an optimizer to obtain a best fit value

Other optimizing software can also be used to generate intial positions. Depending on the quality of data collected
and whether a suitable guess array of parameters can be made, different optimizing software can provide better best fit
values for for MCMC walkers. Below you will find a few options that cater to different scenarios.

2.2. Tutorials 55

orbitize Documentation

3.2a) Using scipy.optimize.minimize

Assuming the data obtained allows for a suitable guess to be made for each parameter, a scipy.optimize.minimize
software can be used to generate a best fit value. You may want to skip this step and input your guess values directly
into MCMC’s initial walker positions, however scipy can help refine the guess parameters.

First, we define a new log liklihood function function neg_logl based on the guess values we have. Note, since we
have predefined a good guess, from the aforementioned Table, as walker_centres we will continue to use it as a
guess array for examples below.

[10]: # The following code performs a minimization whereas the log liklihood function is based␣
→˓on maximization so we redefine the
likelihood function is redefined to return -x to make this a minization scenario

m = my_driver.sampler

def neg_logl(paramarray):
x = m._logl(

paramarray, include_logp=True
) # set include_logp to true to include guess array in likelihood function

return -x

guessarray = walker_centres
results = mn(neg_logl, guessarray, method="Powell")
print(results.x) # results.x is the best fit value

/home/docs/checkouts/readthedocs.org/user_builds/orbitize/envs/orbitize-manual/lib/
→˓python3.10/site-packages/scipy/optimize/_optimize.py:2577: RuntimeWarning: invalid␣
→˓value encountered in scalar multiply
tmp2 = (x - v) * (fx - fw)

/home/docs/checkouts/readthedocs.org/user_builds/orbitize/envs/orbitize-manual/lib/
→˓python3.10/site-packages/orbitize/priors.py:463: RuntimeWarning: invalid value␣
→˓encountered in log
lnprob = np.log(np.sin(element_array)/normalization)

[4.90426906e+01 9.99444988e-06 2.48501010e+00 1.60085022e+00
2.33034111e+00 7.69934177e-01 5.14404237e+01 1.74922411e+00]

In our trials, Powell has given the best results, but you may replace it with a different minimizing method depending
on your need.

3.3) Scattering walkers

To set up MCMC so that it explores the nearby probablity space thoroughly and finds the global minimum, you can
scatter the initial positions of the walkers around the best fit value. This can be done by adding random numbers to
results.x

This section overrides walker_1sigmas and creates a spread of new_pos in a different manner than above. The following
is a template based on the aforementioned Table. The scatter is created using a variety of methods, we recommend
reviewing the code to ensure it is compatible to your data.

56 Chapter 2. User Guide:

orbitize Documentation

[11]: new_pos = np.random.standard_normal(curr_pos_shape) * 0.03 + results.x

3.4) Update sampler position

After generating and validating your new walker positions, through whatever methods you choose, it’s now time to
update the sampler object to have its curr_pos be your new positions.

[12]: my_driver.sampler.curr_pos = np.copy(new_pos)

3.5) Validate your new positions

Drawing from a normal distribution can cause your walkers to start outside of your prior space. See the Modifying
Priors tutorial for information on how to interact with the prior objects, which would allow you to find the limits on
each parameter set by the priors etc.

Here, let’s do something more simple and just check that all values are physically valid. After this we can begin to
correct them.

The following function can be used to identify walkers that have been initialized outside of the appropriate prior proba-
bility space. It will raise a ValueError if walkers are initialized outside of the priors. You should update your positions
until this method runs without raising an error.

[13]: try:
my_driver.sampler.check_prior_support()

except Exception as e:
print(e)

Attempting to start with walkers outside of prior support: check parameter(s) 1

We should continue investigating which parameters are being initialized outside of the prior space until this function
returns empty lists.

And you’re done! You can continue at “Running the MCMC Sampler” in the MCMC Introduction Tutorial

2.2.9 Radial Velocity Tutorial for MCMC

By Roberto Tejada (2019)

This tutorial will assume the user is familiar with the Driver class and is acquainted with MCMC terminology. For
more information about MCMC, see the MCMC Introduction Tutorial.

We explain how to jointly fit radial velocity data and relative astrometry using the MCMC technique. First we need a set
of data containing radial velocity measurements. We check the data using read_input and observe the quant_type
column for radial velocity data. For more information on orbitize.read_input.read_file(), see the Formatting
Input Tutorial. You can fit for separate jitter and gamma terms for each RV instrument in your dataset by adding an
“instrument” column to your data csv.

NOTE: Astrometry+RV fitting currently only works with MCMC and not OFTI.

2.2. Tutorials 57

https://orbitize.readthedocs.io/en/latest/tutorials/MCMC_tutorial.html#Running-the-MCMC-Sampler
https://orbitize.readthedocs.io/en/latest/tutorials/MCMC_tutorial.html
https://orbitize.readthedocs.io/en/latest/formatting_inputs.html
https://orbitize.readthedocs.io/en/latest/formatting_inputs.html

orbitize Documentation

Read and Format Data

[1]: import numpy as np
import matplotlib.pyplot as plt
from orbitize import read_input, plot, priors, driver, DATADIR
import multiprocessing as mp

data_table = read_input.read_file("{}/HD4747.csv".format(DATADIR)) # print all columns
data_table.pprint_all()

epoch object quant1 quant1_err quant2 quant2_err quant12_corr quant_type instrument
--------- ------ -------- ---------- ------ ---------- ------------ ---------- ----------
56942.3 1 606.5 7.0 180.04 0.62 nan seppa defsp
57031.2 1 606.6 6.4 180.52 0.58 nan seppa defsp
57289.4 1 604.0 7.0 184.9 0.9 nan seppa defsp

50366.475 0 -0.54103 0.00123 nan nan nan rv defrv
50418.329 0 -0.40053 0.00206 nan nan nan rv defrv
50462.252 0 -0.24094 0.0011 nan nan nan rv defrv
50689.604 0 0.37292 0.00117 nan nan nan rv defrv
50784.271 0 0.46223 0.00133 nan nan nan rv defrv
50806.227 0 0.48519 0.00103 nan nan nan rv defrv
50837.217 0 0.49395 0.00117 nan nan nan rv defrv
50838.201 0 0.49751 0.00112 nan nan nan rv defrv
50839.211 0 0.50187 0.00112 nan nan nan rv defrv
51009.62 0 0.53355 0.00135 nan nan nan rv defrv
51011.548 0 0.53164 0.00128 nan nan nan rv defrv
51013.602 0 0.53629 0.0016 nan nan nan rv defrv
51050.491 0 0.52154 0.00468 nan nan nan rv defrv
51170.248 0 0.50757 0.0014 nan nan nan rv defrv
51367.585 0 0.47678 0.00131 nan nan nan rv defrv
51409.527 0 0.46147 0.00523 nan nan nan rv defrv
51543.244 0 0.44311 0.00152 nan nan nan rv defrv
51550.229 0 0.43286 0.00147 nan nan nan rv defrv
51755.551 0 0.39329 0.00213 nan nan nan rv defrv
51899.284 0 0.36457 0.00163 nan nan nan rv defrv
52097.626 0 0.32986 0.00157 nan nan nan rv defrv
52488.542 0 0.26687 0.0015 nan nan nan rv defrv
52572.312 0 0.25035 0.00195 nan nan nan rv defrv
52987.228 0 0.19466 0.00238 nan nan nan rv defrv
52988.186 0 0.18469 0.00194 nan nan nan rv defrv
53238.456 0 0.16892 0.00134 nan nan nan rv defrv
53303.403 0 0.16769 0.00112 nan nan nan rv defrv
53339.265 0 0.16069 0.00119 nan nan nan rv defrv
53724.274 0 0.11302 0.00103 nan nan nan rv defrv
53724.276 0 0.11605 0.00112 nan nan nan rv defrv
54717.455 0 0.00984 0.00123 nan nan nan rv defrv
54718.508 0 0.01242 0.00115 nan nan nan rv defrv
54719.51 0 0.01572 0.00123 nan nan nan rv defrv
54720.47 0 0.01534 0.00113 nan nan nan rv defrv
54722.401 0 0.01479 0.00127 nan nan nan rv defrv
54723.47 0 0.01422 0.00122 nan nan nan rv defrv
54724.474 0 0.01169 0.0012 nan nan nan rv defrv
54725.383 0 0.01383 0.00113 nan nan nan rv defrv

(continues on next page)

58 Chapter 2. User Guide:

orbitize Documentation

(continued from previous page)

54726.505 0 0.0195 0.00123 nan nan nan rv defrv
54727.452 0 0.0175 0.00113 nan nan nan rv defrv
55014.62 0 -0.00636 0.00141 nan nan nan rv defrv
55015.624 0 -0.00409 0.00138 nan nan nan rv defrv
55016.624 0 -0.00566 0.00121 nan nan nan rv defrv
55048.525 0 -0.01975 0.00124 nan nan nan rv defrv
55076.584 0 -0.01614 0.00128 nan nan nan rv defrv
55077.594 0 -0.01303 0.00126 nan nan nan rv defrv
55134.464 0 -0.01689 0.00136 nan nan nan rv defrv
55198.254 0 -0.02885 0.0012 nan nan nan rv defrv
55425.584 0 -0.04359 0.00125 nan nan nan rv defrv
55522.379 0 -0.0512 0.0013 nan nan nan rv defrv
55806.547 0 -0.07697 0.0013 nan nan nan rv defrv
56148.55 0 -0.10429 0.00128 nan nan nan rv defrv
56319.201 0 -0.1102 0.00128 nan nan nan rv defrv
56327.208 0 -0.11332 0.00149 nan nan nan rv defrv
56507.645 0 -0.12324 0.00133 nan nan nan rv defrv
56912.534 0 -0.17085 0.00113 nan nan nan rv defrv

The quant_type column displays the type of data each row contains: astrometry (radec or seppa), or radial velocity
(rv). For astrometry, quant1 column contains right ascension or separation, and the quant2 column contains declina-
tion or position angle. For rv data, quant1 contains radial velocity data in km/s, while quant2 is filled with nan to
preserve the data structure. The table contains each respective error column.

We can now initialize the Driver class. MCMC samplers take time to converge to absolute maxima in parameter
space, and the more parameters we introduce, the longer we expect it to take.

Create Driver Object

For joint orbital fits with RV data, we need to fit the stellar and companion masses (m0 and m1 respectively as separate
free parameters). This differs from the astrometry-only case where fitting the total mass mtot suffices. We set the
system keyword fit_secondary_mass to True when initializing the Driver object.

[2]: filename = "{}/HD4747.csv".format(DATADIR)

system parameters
num_secondary_bodies = 1
stellar_mass = 0.84 # [Msol]
plx = 53.18 # [mas]
mass_err = 0.04 # [Msol]
plx_err = 0.12 # [mas]

MCMC parameters
num_temps = 5
num_walkers = 30
num_threads = 2 # or a different number if you prefer, eg mp.cpu_count()

my_driver = driver.Driver(
filename, 'MCMC', num_secondary_bodies, stellar_mass, plx, mass_err=mass_err, plx_

→˓err=plx_err,
system_kwargs = {'fit_secondary_mass':True, 'tau_ref_epoch':0},
mcmc_kwargs={'num_temps': num_temps, 'num_walkers': num_walkers, 'num_threads': num_

(continues on next page)

2.2. Tutorials 59

orbitize Documentation

(continued from previous page)

→˓threads}
)

Since MCMC is an object in orbitize!, we can assign a variable to the sampler and work with this variable:

[3]: m = my_driver.sampler

RV Priors

The priors for the two RV parameters, the radial velocity offset (gamma), and jitter (sigma), have default uniform prior
and log uniform prior respectively. The gamma uniform prior is set between (−5, 5) km/s, and the jitter log uniform
prior is set for (10−4, 0.05) km/s. The prior for m1 is a log uniform prior and is set for (10−3, 2.0)𝑀⊙. The current
version of orbitize addressed in this tutorial returns the stellar radial velocity only.

NOTE: We may change the priors as instructed in the Modifying Priors tutorial:

[4]: # getting the system object:
sys = my_driver.system

lab = sys.param_idx

print(sys.labels)
print(sys.sys_priors)

print(vars(sys.sys_priors[lab['m1']]))

['sma1', 'ecc1', 'inc1', 'aop1', 'pan1', 'tau1', 'plx', 'gamma_defrv', 'sigma_defrv', 'm1
→˓', 'm0']
[Log Uniform, Uniform, Sine, Uniform, Uniform, Uniform, Gaussian, Uniform, Log Uniform,␣
→˓Log Uniform, Gaussian]
{'minval': 1e-06, 'maxval': 2, 'logmin': -13.815510557964274, 'logmax': 0.
→˓6931471805599453}

[5]: # change the m1 prior:
sys.sys_priors[lab['m1']] = priors.LogUniformPrior(1e-4, 0.5)

print(sys.labels)
print(sys.sys_priors)
print(vars(sys.sys_priors[lab['m1']]))

['sma1', 'ecc1', 'inc1', 'aop1', 'pan1', 'tau1', 'plx', 'gamma_defrv', 'sigma_defrv', 'm1
→˓', 'm0']
[Log Uniform, Uniform, Sine, Uniform, Uniform, Uniform, Gaussian, Uniform, Log Uniform,␣
→˓Log Uniform, Gaussian]
{'minval': 0.0001, 'maxval': 0.5, 'logmin': -9.210340371976182, 'logmax': -0.
→˓6931471805599453}

60 Chapter 2. User Guide:

https://orbitize.readthedocs.io/en/latest/tutorials/Modifying_Priors.html

orbitize Documentation

Running the MCMC Sampler

As noted in the MCMC Introduction Tutorial, we must choose the sampler step for MCMC and can save every 𝑛𝑡ℎ
sample to avoid using too much disk space using thin.

[6]: total_orbits = 1000 # number of steps x number of walkers (at lowest temperature)
burn_steps = 10 # steps to burn in per walker
thin = 2 # only save every 2 steps

[7]: m.run_sampler(total_orbits, burn_steps=burn_steps, thin=thin)

Starting Burn in

/home/sblunt/Projects/orbitize/orbitize/priors.py:354: RuntimeWarning: invalid value␣
→˓encountered in log
lnprob = -np.log((element_array*normalizer))

/home/sblunt/Projects/orbitize/orbitize/priors.py:354: RuntimeWarning: invalid value␣
→˓encountered in log
lnprob = -np.log((element_array*normalizer))

/home/sblunt/Projects/orbitize/orbitize/priors.py:463: RuntimeWarning: invalid value␣
→˓encountered in log
lnprob = np.log(np.sin(element_array)/normalization)

/home/sblunt/Projects/orbitize/orbitize/priors.py:463: RuntimeWarning: invalid value␣
→˓encountered in log
lnprob = np.log(np.sin(element_array)/normalization)

10/10 steps of burn-in complete
Burn in complete. Sampling posterior now.

Run complete

[7]: <ptemcee.sampler.Sampler at 0x7f17c0d19b50>

Now we can plot the distribution of MCMC parameter of interest:

[8]: accepted_m1 = m.results.post[:, lab['m1']]
plt.hist(accepted_m1,histtype='step')
plt.xlabel('m1'); plt.ylabel('number of orbits')
plt.show()

2.2. Tutorials 61

https://orbitize.readthedocs.io/en/latest/tutorials/MCMC_tutorial.html

orbitize Documentation

Saving Results over Extended MCMC Run

Sometimes our MCMC run will need to run for an extended period of time to let the walkers converge. To observe
the convergence, we often need to see the walkers’ progress along parameter space. We can save the sampler results
periodically and keep running the sampler until convergence. To run for a greater number of steps and periodically
save the results, we can create a for-loop and run for as many iterations as we’d like.

[9]: filename = "{}/HD4747.csv".format(DATADIR)

total_orbits = 1000 # number of steps x number of walkers (at lowest temperature)
burn_steps = 10 # steps to burn in per walker
thin = 2 # only save every 10th step

system parameters
num_secondary_bodies = 1
stellar_mass = 0.84 # [Msol]
plx = 53.18 # [mas]
mass_err = 0.04 # [Msol]
plx_err = 0.12 # [mas]

MCMC parameters
num_temps = 5
num_walkers = 30
num_threads = 2 # or a different number if you prefer, e.g. mp.cpu_count()

my_driver = driver.Driver(
filename, 'MCMC', num_secondary_bodies, stellar_mass, plx, mass_err=mass_err, plx_

→˓err=plx_err,
system_kwargs = {'fit_secondary_mass':True, 'tau_ref_epoch':0},
mcmc_kwargs={'num_temps': num_temps, 'num_walkers': num_walkers, 'num_threads': num_

→˓threads}
)

m = my_driver.sampler

We’re now ready for the loop! The results object contains a save_results function which lets us save the results
for our directory, and we will use the load_results object from results to access the data later. We also define the
n_iter below to mark how many MCMC runs to save our within results.

NOTE: To avoid long convergence periods, we may initialize the walkers in a sphere around the global minima of the
parameter space as outlined in our Modifying MCMC Initial Positions Tutorial.

[10]: # file name to save as:
hdf5_filename = 'my_rv_posterior_%1d.hdf5'

[11]: n_iter = 2 # number of iterations
for i in range(n_iter):

running the sampler:
orbits = m.run_sampler(total_orbits, burn_steps=burn_steps, thin=thin)
myResults = m.results
hdf5_filename = 'my_rv_posterior_%1d.hdf5' % i
myResults.save_results(hdf5_filename) # saves results object as an hdf5 file

62 Chapter 2. User Guide:

https://orbitize.readthedocs.io/en/latest/tutorials/Modifying_MCMC_initial_positions.html

orbitize Documentation

Starting Burn in

/home/sblunt/Projects/orbitize/orbitize/priors.py:354: RuntimeWarning: invalid value␣
→˓encountered in log
lnprob = -np.log((element_array*normalizer))

/home/sblunt/Projects/orbitize/orbitize/priors.py:463: RuntimeWarning: invalid value␣
→˓encountered in log
lnprob = np.log(np.sin(element_array)/normalization)

/home/sblunt/Projects/orbitize/orbitize/priors.py:354: RuntimeWarning: invalid value␣
→˓encountered in log
lnprob = -np.log((element_array*normalizer))

/home/sblunt/Projects/orbitize/orbitize/priors.py:463: RuntimeWarning: invalid value␣
→˓encountered in log
lnprob = np.log(np.sin(element_array)/normalization)

10/10 steps of burn-in complete
Burn in complete. Sampling posterior now.

Run complete
Starting Burn in

/home/sblunt/Projects/orbitize/orbitize/priors.py:354: RuntimeWarning: invalid value␣
→˓encountered in log
lnprob = -np.log((element_array*normalizer))

/home/sblunt/Projects/orbitize/orbitize/priors.py:354: RuntimeWarning: invalid value␣
→˓encountered in log
lnprob = -np.log((element_array*normalizer))

/home/sblunt/Projects/orbitize/orbitize/priors.py:463: RuntimeWarning: invalid value␣
→˓encountered in log
lnprob = np.log(np.sin(element_array)/normalization)

/home/sblunt/Projects/orbitize/orbitize/priors.py:463: RuntimeWarning: invalid value␣
→˓encountered in log
lnprob = np.log(np.sin(element_array)/normalization)

10/10 steps of burn-in complete
Burn in complete. Sampling posterior now.

Run complete

Plotting and Accesing Saved Results

We can plot the corner plot saved in the results object by following the steps in the Advanced Plotting Tutorial:

[12]: median_values = np.median(myResults.post,axis=0) # Compute median of each parameter
range_values = np.ones_like(median_values)*0.95 # Plot only 95% range for each parameter
corner_figure_median_95 = myResults.plot_corner(

range=range_values,
truths=median_values

)

2.2. Tutorials 63

https://orbitize.readthedocs.io/en/latest/tutorials/Plotting_tutorial.html

orbitize Documentation

As illustrated in the plot above, MCMC needs more time to run. We only performed two iterations in the loop to
demonstrate its useage, but with increased n_iter, the trendplots saved in the loop and the corner plot will show how
the walkers converge to absolute extrema in parameter space.

To access the saved data, we can read it into a results object as shown in the MCMC Introduction Tutorial:

[13]: from orbitize import results

loaded_results = results.Results() # Create blank results object for loading
loaded_results.load_results('my_rv_posterior_%1d.hdf5' % (n_iter-1))

To demonstrate use of the loaded results file above, we can use the saved results to plot our orbital plots:

64 Chapter 2. User Guide:

https://orbitize.readthedocs.io/en/latest/tutorials/MCMC_tutorial.html

orbitize Documentation

[14]: epochs = my_driver.system.data_table['epoch']
orbit_plot_fig = loaded_results.plot_orbits(

object_to_plot = 1, # Plot orbits for the first (and only, in this case) companion
num_orbits_to_plot= 50, # Will plot 50 randomly selected orbits of this companion
start_mjd=epochs[0], # Minimum MJD for colorbar (here we choose first data epoch)

)

WARNING: ErfaWarning: ERFA function "d2dtf" yielded 1 of "dubious year (Note 5)"␣
→˓[astropy._erfa.core]
WARNING: ErfaWarning: ERFA function "dtf2d" yielded 1 of "dubious year (Note 6)"␣
→˓[astropy._erfa.core]
WARNING: ErfaWarning: ERFA function "utctai" yielded 1 of "dubious year (Note 3)"␣
→˓[astropy._erfa.core]
WARNING: ErfaWarning: ERFA function "taiutc" yielded 1 of "dubious year (Note 4)"␣
→˓[astropy._erfa.core]
WARNING: ErfaWarning: ERFA function "dtf2d" yielded 10 of "dubious year (Note 6)"␣
→˓[astropy._erfa.core]

<Figure size 1008x432 with 0 Axes>

We can pass the rv_time_series = True argument in plot_orbits to display the RV time series plot as a third
panel of plot_orbits:

[15]: epochs = my_driver.system.data_table['epoch']

orbit_plot_fig = plot.plot_orbits(
loaded_results,
object_to_plot = 1, # Plot orbits for the first (and only, in this case) companion
num_orbits_to_plot= 50, # Will plot 50 randomly selected orbits of this companion
start_mjd=np.min(epochs), # Minimum MJD for colorbar (here we choose first data␣

→˓epoch)
show_colorbar = True,
rv_time_series = True

)
orbit_plot_fig.savefig('HD4747_rvtimeseries_panelplot.png', dpi=250)

2.2. Tutorials 65

orbitize Documentation

WARNING: ErfaWarning: ERFA function "d2dtf" yielded 1 of "dubious year (Note 5)"␣
→˓[astropy._erfa.core]
WARNING: ErfaWarning: ERFA function "dtf2d" yielded 1 of "dubious year (Note 6)"␣
→˓[astropy._erfa.core]
WARNING: ErfaWarning: ERFA function "utctai" yielded 1 of "dubious year (Note 3)"␣
→˓[astropy._erfa.core]
WARNING: ErfaWarning: ERFA function "taiutc" yielded 1 of "dubious year (Note 4)"␣
→˓[astropy._erfa.core]
WARNING: ErfaWarning: ERFA function "dtf2d" yielded 4 of "dubious year (Note 6)"␣
→˓[astropy._erfa.core]

<Figure size 1008x432 with 0 Axes>

2.2.10 Multi-planet Fits

by Jason Wang (2020)

In orbitize!, we can fit for multiple planets in the system in the same way as fitting a single planet. Note that currently,
orbitize! handles planet-planet gravitational interations with an nbody integrator solver. However, here, we only
take into account star-planet interactions. For example, the distance between planet b and the star will change with
the existance of planet c because planet c has some finite mass and perturbs the star from the system barycenter. Even
without planet-planet scattering, one can approximately fit for dynamical masses this way. By default in orbitize!,
we assume the planets are test particles (mass = 0), so there is no star-planet interactions. Later in this tutorial in the
“Multiplanet Dynamical Mass” section, we will describe how to turn on this feature.

Multi-planet capabilities are generally handled under the hood, requiring not many modifications to the procedure for
fitting a single planet. In this example, we will fit a few measurements of the HR 8799 b and c planets.

66 Chapter 2. User Guide:

orbitize Documentation

[1]: import os
import orbitize
import orbitize.driver

In this tutorial, we will do an example with OFTI just because it is fast. However, in most cases, you will likely want
to use MCMC as OFTI slows down significantly with multiple planets (even if each planet only has two astrometric
data points as shown in the example). MCMC also requires longer run time typically, but it generally scales better than
OFTI.

We follow the same steps as in the OFTI tutorial but set number of secondary bodies to 2 and read in a data file
that contains astrometry for two planets in the system (in the example, a shortened version of the HR 8799 b and c
astrometry). For MCMC, do the same thing as the single planet MCMC tutorial and make the same challenges as we
have here with OFTI. In summary, all that needs to be done is to include both planets’ measurements in the input data
file and adjust the number of secondary bodies in the system.

[2]: input_file = os.path.join(orbitize.DATADIR, "test_val_multi.csv")
my_driver = orbitize.driver.Driver(input_file, 'OFTI',

2, # number of secondary bodies in system
1.52, # total mass [M_sun]
24.76, # total parallax of system [mas]
mass_err=0.15,
plx_err=0.64)

Converting ra/dec data points in data_table to sep/pa. Original data are stored in input_
→˓table.

Next we run the sampler as usual:

[3]: s = my_driver.sampler
orbits = s.run_sampler(1000)

With two planets, we have 2 sets of 6 orbtial parameters as well as the 2 system parameters (parallax and total mass).
Our posterior, stored in orbits, is a (1000 x 14) array instead of the (1000 x 8) array had we fit a single planet.

As it gets confusing to track with index corresponds to which orbital parameter, we recommend you use the sys-
tem.param_idx to index the parameters you are interested in. As a reminder, the abbreviations are: semi-major axis
(sma), eccentricity (ecc), inclination (inc), argument of periastron (aop), position angle of nodes (pan), and epoch of
periastron passage in fraction of the orbital period (tau). The 1 and 2 correspond to the two secondary bodies (in this
case, HR 8799 b and HR 8799 c respectively)

[4]: print(orbits[0])
print(orbits.shape)
print(s.system.param_idx)

[56.24156344 0.27898557 0.30103121 1.9027183 2.28889823 0.46425206
66.25721525 0.58545346 1.68028001 4.79289978 2.23970056 0.33901155
24.8454356 1.43000678]
(1000, 14)
{'sma1': 0, 'ecc1': 1, 'inc1': 2, 'aop1': 3, 'pan1': 4, 'tau1': 5, 'sma2': 6, 'ecc2': 7,
→˓'inc2': 8, 'aop2': 9, 'pan2': 10, 'tau2': 11, 'plx': 12, 'mtot': 13}

2.2. Tutorials 67

https://orbitize.readthedocs.io/en/latest/tutorials/OFTI_tutorial.html
https://orbitize.readthedocs.io/en/latest/tutorials/MCMC_tutorial.html

orbitize Documentation

Plotting

We will go over briefly some considerations for visualizing multiplanet fits using the orbitize! API. For a more
detailed guide on data visualization capabilities within orbitize, see the Orbitize plotting tutorial.

Corner Plot

Corner plots are slow when trying to plot too many parameters (the number of subplots scales as n^2 where n is the
number of dimensions). It also is difficult to read a plot with too many subplots. For this reason, we recommend looking
at particular parameter covariances, or breaking it up to have one corner plot for each planet. Again, use the notation
in system.param_idx notation to grab the parameters you want.

[5]: my_results = s.results
corner_figure = my_results.plot_corner(param_list=['sma2', 'ecc2', 'inc2', 'aop2', 'pan2
→˓','tau2', 'plx', 'mtot'])

68 Chapter 2. User Guide:

https://orbitize.info/en/latest/tutorials/Plotting_tutorial.html

orbitize Documentation

Orbit Plot

Currently, the orbit plotting tool in results class only plots the orbit of one body at a time. You can select which body
you wish to plot.

[6]: epochs = my_driver.system.data_table['epoch']

orbit_figure = my_results.plot_orbits(
start_mjd=epochs[0], # Minimum MJD for colorbar (here we choose first data epoch),
object_to_plot=2 # plot planet c

)

2.2. Tutorials 69

orbitize Documentation

WARNING: ErfaWarning: ERFA function "d2dtf" yielded 1 of "dubious year (Note 5)"␣
→˓[astropy._erfa.core]
WARNING: ErfaWarning: ERFA function "dtf2d" yielded 1 of "dubious year (Note 6)"␣
→˓[astropy._erfa.core]
WARNING: ErfaWarning: ERFA function "utctai" yielded 1 of "dubious year (Note 3)"␣
→˓[astropy._erfa.core]
WARNING: ErfaWarning: ERFA function "taiutc" yielded 1 of "dubious year (Note 4)"␣
→˓[astropy._erfa.core]
WARNING: ErfaWarning: ERFA function "dtf2d" yielded 5 of "dubious year (Note 6)"␣
→˓[astropy._erfa.core]

<Figure size 1008x432 with 0 Axes>

[7]: orbit_figure = my_results.plot_orbits(
start_mjd=epochs[0], # Minimum MJD for colorbar (here we choose first data epoch),
object_to_plot=1 # plot planet b

)

WARNING: ErfaWarning: ERFA function "d2dtf" yielded 1 of "dubious year (Note 5)"␣
→˓[astropy._erfa.core]
WARNING: ErfaWarning: ERFA function "dtf2d" yielded 1 of "dubious year (Note 6)"␣
→˓[astropy._erfa.core]
WARNING: ErfaWarning: ERFA function "utctai" yielded 1 of "dubious year (Note 3)"␣
→˓[astropy._erfa.core]
WARNING: ErfaWarning: ERFA function "taiutc" yielded 1 of "dubious year (Note 4)"␣
→˓[astropy._erfa.core]
WARNING: ErfaWarning: ERFA function "dtf2d" yielded 5 of "dubious year (Note 6)"␣
→˓[astropy._erfa.core]

<Figure size 1008x432 with 0 Axes>

70 Chapter 2. User Guide:

orbitize Documentation

Multiplanet Dynamical Mass

In the case we want to fit dynamical masses, the procedure again remains unchanged as for a single planet system (as
described in the RV MCMC Tutorial). The only thing to be aware of the extra parameters for the indiviudal masses of
the components. Again, use the system.param_idx dictionary to keep track of the indices instead of trying to keep
track of the ordering in one’s head. Here, we will not demo a fit, but just show the increasing of parameters by 2 when
fitting for the masses of the two secondary bodies.

Here, the new parameters are m1 and m2, the masses of planets b and c. m0 remains the mass of the star.

[8]: input_file = os.path.join(orbitize.DATADIR, "test_val_multi.csv")
my_driver = orbitize.driver.Driver(input_file, 'MCMC',

2, # number of secondary bodies in system
1.52, # stellar mass [M_sun]
24.76, # total parallax of system [mas]
mass_err=0.15,
plx_err=0.64,
system_kwargs={'fit_secondary_mass' : True })

print(my_driver.system.param_idx)
print(len(my_driver.system.sys_priors))

{'sma1': 0, 'ecc1': 1, 'inc1': 2, 'aop1': 3, 'pan1': 4, 'tau1': 5, 'sma2': 6, 'ecc2': 7,
→˓'inc2': 8, 'aop2': 9, 'pan2': 10, 'tau2': 11, 'plx': 12, 'm1': 13, 'm2': 14, 'm0': 15}
16

2.2. Tutorials 71

RV_MCMC_Tutorial.html

orbitize Documentation

2.2.11 Using non-orbitize! Posteriors as Priors

By Jorge Llop-Sayson (2021)

This tutorial shows how to use posterior distribution from any source as orbitize! priors using a Kernel Density
Estimator (KDE).

The user will need their posterior chains, consisiting of any number of correlated parameters, which will be used to get
a KDE fit of the chains to be used as priors to orbitize!.

Once the priors are initialized the user can select their favorite fit method.

Read Data

[1]: import numpy as np
import matplotlib.pyplot as plt
from orbitize import system, priors, basis, read_input, DATADIR
import pandas as pd

Read RadVel posterior chain
pdf_fromRadVel = pd.read_csv(

"{}/sample_radvel_chains.csv.bz2".format(DATADIR), compression="bz2", index_col=0
)

per1 = pdf_fromRadVel.per1 # Period
k1 = pdf_fromRadVel.k1 # Doppler semi-amplitude
secosw1 = pdf_fromRadVel.secosw1
sesinw1 = pdf_fromRadVel.sesinw1
tc1 = pdf_fromRadVel.tc1 # time of conj.

len_pdf = len(pdf_fromRadVel)

/Users/bluez3303/miniconda3/envs/python3.10/lib/python3.10/site-packages/scipy/__init__.
→˓py:146: UserWarning: A NumPy version >=1.17.3 and <1.25.0 is required for this version␣
→˓of SciPy (detected version 1.25.0
warnings.warn(f"A NumPy version >={np_minversion} and <{np_maxversion}"

The quant_type column displays the type of data each row contains: astrometry (radec or seppa), or radial velocity
(rv). For astrometry, quant1 column contains right ascension or separation, and the quant2 column contains declina-
tion or position angle. For rv data, quant1 contains radial velocity data in km/s, while quant2 is filled with nan to
preserve the data structure. The table contains each respective error column.

We can now initialize the Driver class. MCMC samplers take time to converge to absolute maxima in parameter
space, and the more parameters we introduce, the longer we expect it to take.

72 Chapter 2. User Guide:

orbitize Documentation

Format Data

In this example we use data from RadVel, so we want to change format to use it in orbitize.

[2]: # From P to sma:
system_mass = 1 # [Msol]
system_mass_err = 0.01 # [Msol]
per_yr = per1 / 365.25
pdf_msys = np.random.normal(system_mass, system_mass_err, size=len_pdf)
sma_prior = (per_yr**2 * pdf_msys) ** (1 / 3)

ecc from RadVel parametrization
ecc_prior = sesinw1**2 + secosw1**2

little omega, i.e. argument of the periastron, from RadVel parametrization
w_prior = (

np.arctan2(sesinw1, secosw1) + np.pi
) # +pi bc of RadVel vs Orbitize convention
w_prior[w_prior >= np.pi] = w_prior[w_prior >= np.pi] - 2 * np.pi

def Tc_to_Tp(tc, per, ecc, omega): # stolen from radvel
f = np.pi / 2 - omega
ee = 2 * np.arctan(np.tan(f / 2) * np.sqrt((1 - ecc) / (1 + ecc)))
tp = tc - per / (2 * np.pi) * (ee - ecc * np.sin(ee))
return tp

tau, i.e. fraction of elapsed time of node passage, from RadVel parametrization
tp1 = Tc_to_Tp(tc1, per1, ecc_prior, w_prior)
tau_prior = basis.tp_to_tau(tp1, 55000, per1)

m1 prior
K_0 = 28.4329
m1sini_prior = (

k1
/ K_0
* np.sqrt(1.0 - ecc_prior**2.0)
* pdf_msys ** (2.0 / 3.0)
* per_yr ** (1 / 3.0)

) * 1e-3
sini_prior = priors.SinPrior()
i_prior_samples = sini_prior.draw_samples(len_pdf)
m1_prior = m1sini_prior / np.sin(i_prior_samples)

We now have the orbital parameters that are accessible with RV: SMA, eccentricity, argument of periastron, and tau.
Plus, given that we obtained Msini from RV, we draw random values for the inclination to get correlated values for m1
and inc. We thus end in this case with a correlated 6-parameter set.

2.2. Tutorials 73

orbitize Documentation

Initialize Priors

We initilize the System object to initialize the priors

[3]: # Initialize System object which stores data & sets priors
data_table = read_input.read_file("{}/test_val.csv".format(DATADIR)) # read data
num_secondary_bodies = 1

system_orbitize = system.System(
num_secondary_bodies,
data_table,
system_mass,
1e1,
mass_err=system_mass_err,
plx_err=0.1,
tau_ref_epoch=55000,
fit_secondary_mass=True,

)

param_idx = system_orbitize.param_idx

print(param_idx)

{'sma1': 0, 'ecc1': 1, 'inc1': 2, 'aop1': 3, 'pan1': 4, 'tau1': 5, 'plx': 6, 'gamma_defrv
→˓': 7, 'sigma_defrv': 8, 'm1': 9, 'm0': 10}

Let’s initilize the KDE prior object with the default bandwidth.

[4]: from scipy.stats import gaussian_kde

The values go into a matrix
total_params = 6
values = np.empty((total_params, len_pdf))
values[0, :] = sma_prior
values[1, :] = ecc_prior
values[2, :] = i_prior_samples
values[3, :] = w_prior
values[4, :] = tau_prior
values[5, :] = m1_prior

kde = gaussian_kde(
values, bw_method=None

) # None indicates that the KDE bandwidth is set to default
kde_prior_obj = priors.KDEPrior(

kde, total_params
) # ,bounds=bounds_priors,log_scale_arr=[False,False,False,False,False,False])

system_orbitize.sys_priors[
param_idx["sma1"]

] = kde_prior_obj # priors.GaussianPrior(np.mean(sma_prior), np.std(sma_prior))#priors.
→˓KDEPrior(gaussian_kde(values[0,:], bw_method=None),1)#kde_prior_obj#
system_orbitize.sys_priors[

param_idx["ecc1"]
] = kde_prior_obj # priors.GaussianPrior(np.mean(ecc_prior), np.std(ecc_prior))#kde_

(continues on next page)

74 Chapter 2. User Guide:

orbitize Documentation

(continued from previous page)

→˓prior_obj#priors.GaussianPrior(np.mean(pdf_fromRadVel['e1']), np.std(pdf_fromRadVel['e1
→˓']))#priors.KDEPrior(gaussian_kde(values[1,:], bw_method=None),1)#kde_prior_obj
system_orbitize.sys_priors[param_idx["inc1"]] = kde_prior_obj
system_orbitize.sys_priors[

param_idx["aop1"]
] = kde_prior_obj # priors.GaussianPrior(np.mean(w_prior), 0.1)#kde_prior_obj#kde_prior_
→˓obj
system_orbitize.sys_priors[

param_idx["tau1"]
] = kde_prior_obj # priors.GaussianPrior(np.mean(tau_prior), 0.01)#np.std(tau_prior))
→˓#kde_prior_obj#kde_prior_obj#priors.KDEPrior(gaussian_kde(values[4,:], bw_method=None),
→˓1)#kde_prior_obj
system_orbitize.sys_priors[-2] = kde_prior_obj

We can plot the KDE fit against the actual distribution to see if the selected bandwidth is adecuate for the data.

[5]: fig, axs = plt.subplots(2, 3, figsize=(11, 6))
sma
axs[0, 0].hist(

kde.resample(len_pdf)[0, :],
100,
density=True,
color="b",
label="Posterior Draw",
stacked=True,

)
axs[0, 0].hist(

sma_prior,
100,
density=True,
color="r",
histtype="step",
label="Prior Draw",
stacked=True,

) # color='r')#
axs[0, 0].set_xlabel("SMA [AU]")
axs[0, 0].set_yticklabels([])
ecc
axs[0, 1].hist(

kde.resample(len_pdf)[1, :],
100,
density=True,
color="b",
label="Posterior Draw",
stacked=True,

)
axs[0, 1].hist(

ecc_prior,
100,
density=True,
color="r",
histtype="step",

(continues on next page)

2.2. Tutorials 75

orbitize Documentation

(continued from previous page)

label="Prior Draw",
stacked=True,

) # color='r')#
axs[0, 1].set_xlabel("eccentricity")
axs[0, 1].set_yticklabels([])
mass
masskde_arr = kde.resample(len_pdf)[-1, :]
masskde_arr = masskde_arr[masskde_arr < 0.003]
m1_prior_draw = m1_prior[m1_prior < 0.003]
axs[1, 0].hist(

masskde_arr, 100, density=True, color="b", label="Posterior Draw", stacked=True
)
axs[1, 0].hist(

(m1_prior_draw),
100,
density=True,
color="r",
histtype="step",
label="Prior Draw",
stacked=True,

) # color='r')#
axs[1, 0].set_xlabel("$Mass_b$ [M_{Jup}]")
axs[1, 0].set_yticklabels([])
inc
axs[1, 1].hist(

np.rad2deg(kde.resample(len_pdf)[2, :]),
100,
density=True,
color="b",
label="Posterior Draw",
stacked=True,

)
axs[1, 1].hist(

np.rad2deg(i_prior_samples),
100,
density=True,
color="r",
histtype="step",
label="Prior Draw",
stacked=True,

) # color='r')#
axs[1, 1].set_xlabel("inclination [deg]")
axs[1, 1].set_yticklabels([])
w
axs[1, 2].hist(

np.rad2deg(kde.resample(len_pdf)[3, :]),
100,
density=True,
color="b",
label="Posterior Draw",
stacked=True,

)

(continues on next page)

76 Chapter 2. User Guide:

orbitize Documentation

(continued from previous page)

axs[1, 2].hist(
np.rad2deg(w_prior),
100,
density=True,
color="r",
histtype="step",
label="Prior Draw",
stacked=True,

) # color='r')#
axs[1, 2].set_xlabel("Arg. of periastron [deg]")
axs[1, 2].set_yticklabels([])

axs[0, 1].legend(bbox_to_anchor=(1.25, 1), loc="upper left", ncol=1)
axs[0, 2].axis("off")

[5]: (0.0, 1.0, 0.0, 1.0)

As seen from the plot produced above, m1 is not well fit by the KDE; the bandwidth selected (we selected the default)
is too broad and the lower bound of the mass is not well reproduced.

2.2. Tutorials 77

orbitize Documentation

Select the KDE bandwidth

A temptation to fix the problem presented above, the oversmoothing of the data, would be to pick a very narrow
bandwith, one that reproduces perfectly the data. However, the data from our posterior chains is finite, and contains
throughout the distribution peaks and valleys that would introduce artifacts in the KDE fit contaminating the prior
probabilities.

[6]: numtry_prior = 20
sma_arr = np.mean(sma_prior) * np.linspace(0.98, 1.02, numtry_prior)

Initialize KDE with default bandwidth
kde1 = gaussian_kde(

values, bw_method=None
) # None indicates that the KDE bandwidth is set to default
Initialize KDE with narrow bandwidth
bw2 = 0.15
kde2 = gaussian_kde(values, bw_method=bw2)

lnprior_arr1 = np.zeros((numtry_prior))
lnprior_arr2 = np.zeros((numtry_prior))
for idx_prior, sma in enumerate(sma_arr):

lnprior_arr1[idx_prior] = kde1.logpdf(
[

sma,
np.mean(ecc_prior),
np.pi / 2,
np.mean(w_prior),
np.mean(tau_prior),
np.mean(m1_prior),

]
)
lnprior_arr2[idx_prior] = kde2.logpdf(

[
sma,
np.mean(ecc_prior),
np.pi / 2,
np.mean(w_prior),
np.mean(tau_prior),
np.mean(m1_prior),

]
)

plt.figure(100)
plt.plot(sma_arr, lnprior_arr1, label="KDE BW = Default")
plt.plot(sma_arr, lnprior_arr2, label="KDE BW = {} (narrow)".format(bw2))
plt.xlabel("SMA [AU]")
plt.ylabel("log-prior probability")
plt.legend(loc="upper right") # , fontsize='x-large')

/var/folders/y8/lw5f1dcj04g4txq4y2znyc200000gn/T/ipykernel_15758/100748084.py:15:␣
→˓DeprecationWarning: Conversion of an array with ndim > 0 to a scalar is deprecated,␣
→˓and will error in future. Ensure you extract a single element from your array before␣
→˓performing this operation. (Deprecated NumPy 1.25.)
lnprior_arr1[idx_prior] = kde1.logpdf(

(continues on next page)

78 Chapter 2. User Guide:

orbitize Documentation

(continued from previous page)

/var/folders/y8/lw5f1dcj04g4txq4y2znyc200000gn/T/ipykernel_15758/100748084.py:25:␣
→˓DeprecationWarning: Conversion of an array with ndim > 0 to a scalar is deprecated,␣
→˓and will error in future. Ensure you extract a single element from your array before␣
→˓performing this operation. (Deprecated NumPy 1.25.)
lnprior_arr2[idx_prior] = kde2.logpdf(

[6]: <matplotlib.legend.Legend at 0x7f9fe2a17d30>

The plot above ilustrates that we cannot go arbitrarily narrow for the KDE bandwidth.

A way of choosing the KDE bandwidth is: 1. Pick an acceptable change in the median and 68th interval limits of the
KDE fit w.r.t the actual posterior distribution. This will set a maximum acceptable bandwidth. 2. Pick an acceptable
variation of the log-prior probability when evaluating the priors for a SMA around the prior median SMA. This will
set a minimum acceptable bandwidth.

For this we will loop over a set of bandwidths computing the median and 68th interval limits, and for each bandwidth
we will compute the variation of log-prior with a set of SMAs around the prior median SMA: we will fit a Gaussian
and the standard deviation of the residuals to the fit will be our cost function.

[7]: from scipy.optimize import curve_fit

def gaussian(x, amp, cen, wid, bias):
return amp * np.exp(-((x - cen) ** 2) / wid) + bias

numtry_bw = 10
kde_bw_arr = np.linspace(0.05, 0.1, numtry_bw)
diff_mean_arr = np.zeros((numtry_bw))
diff_p_arr = np.zeros((numtry_bw))
diff_m_arr = np.zeros((numtry_bw))
res_fit_prior2gauss = np.zeros((numtry_bw))

numtry_prior = 20
sma_arr = np.mean(sma_prior) * np.linspace(0.98, 1.02, numtry_prior)

for idx_bw, kde_bw in enumerate(kde_bw_arr):
(continues on next page)

2.2. Tutorials 79

orbitize Documentation

(continued from previous page)

kde = gaussian_kde(values, bw_method=kde_bw)

Check pdf
lnprior_arr = np.zeros((numtry_prior))
for idx_prior, sma in enumerate(sma_arr):

lnprior_arr[idx_prior] = kde.logpdf(
[

sma,
np.mean(ecc_prior),
np.pi / 2,
np.mean(w_prior),
np.mean(tau_prior),
np.mean(m1_prior),

]
)

Quarentiles comparison
masskde_arr = kde.resample(len_pdf)[5, :]
masskde_arr = masskde_arr[masskde_arr < 0.004]
masskde_quantiles = np.quantile(

masskde_arr * 1000, [(1 - 0.68), 0.5, 0.5 + (1 - 0.68)]
)
massprior_quantiles = np.quantile(

m1_prior_draw * 1000, [(1 - 0.68), 0.5, 0.5 + (1 - 0.68)]
)
diff_mean_arr[idx_bw] = (

masskde_quantiles[1] - massprior_quantiles[1]
) / massprior_quantiles[1]
diff_p_arr[idx_bw] = (

(masskde_quantiles[1] - masskde_quantiles[0])
- (massprior_quantiles[1] - massprior_quantiles[0])

) / massprior_quantiles[1]
diff_m_arr[idx_bw] = np.abs(

(
(masskde_quantiles[2] - masskde_quantiles[1])
- (massprior_quantiles[2] - massprior_quantiles[1])

)
/ massprior_quantiles[1]

)

fit to Gaussian
n = len(sma_arr)
mean = np.mean(sma_prior)
sigma = 0.04 # note this correction
best_vals, covar = curve_fit(

gaussian,
sma_arr,
lnprior_arr,
p0=[

np.abs(np.max(lnprior_arr) - np.min(lnprior_arr)),
np.mean(sma_prior),
0.04,

(continues on next page)

80 Chapter 2. User Guide:

orbitize Documentation

(continued from previous page)

np.mean(lnprior_arr) * 4,
],

) # [np.mean(lnprior_arr),mean,sigma])
gauss_fit = gaussian(sma_arr, *best_vals)
if idx_bw % 3 == 0:

plt.figure(101)
plt.plot(sma_arr, lnprior_arr, label="KDE BW = {:.2f}".format(kde_bw))

res_fit_prior2gauss[idx_bw] = np.std(gauss_fit - lnprior_arr)
plt.figure(101)
plt.legend(loc="upper right")
plt.xlabel("SMA [AU]")
plt.ylabel("log-prior")
plt.title("1. Log-prior Variation around Median Prior SMA")

plt.figure(301)
plt.plot(kde_bw_arr, diff_mean_arr * 100, color="k", label="diff median")
plt.plot(

kde_bw_arr,
diff_p_arr * 100,
color="k",
linestyle="--",
label="diff upper 68th interval limit",

)
plt.plot(

kde_bw_arr,
diff_m_arr * 100,
color="k",
linestyle="-.",
label="diff lower 68th interval limit",

)
plt.xlabel("KDE BW")
plt.ylabel("% of prior median")
plt.legend(loc="upper right") # , fontsize='x-large')
plt.title("2. Median and 68th Interv. Limits Changes w.r.t. Prior PDF")

plt.figure(302)
plt.plot(kde_bw_arr, res_fit_prior2gauss, label="")
plt.xlabel("KDE BW")
plt.ylabel("log-prior RMS")
plt.title("3. Std Dev of the Residuals to a Gaussian Fit of Plot #1")

/var/folders/y8/lw5f1dcj04g4txq4y2znyc200000gn/T/ipykernel_15758/2442406081.py:24:␣
→˓DeprecationWarning: Conversion of an array with ndim > 0 to a scalar is deprecated,␣
→˓and will error in future. Ensure you extract a single element from your array before␣
→˓performing this operation. (Deprecated NumPy 1.25.)
lnprior_arr[idx_prior] = kde.logpdf(

/Users/bluez3303/miniconda3/envs/python3.10/lib/python3.10/site-packages/scipy/optimize/_
→˓minpack_py.py:833: OptimizeWarning: Covariance of the parameters could not be estimated
warnings.warn('Covariance of the parameters could not be estimated',

[7]: Text(0.5, 1.0, '3. Std Dev of the Residuals to a Gaussian Fit of Plot #1')

2.2. Tutorials 81

orbitize Documentation

82 Chapter 2. User Guide:

orbitize Documentation

The above plots #2 and #3 give us the information to select the most adecuate KDE bandwidth. For instance, if we
decide that a ~3-4% difference in the median and 68th interval limits is acceptable, that sets a maximum bandwidth of
~0.9

To make a choice for the log-prior probability variation in the SMA range we picked, we can see what variation does
the log-likelihood present for the same SMA range. For the same SMA range, we compute the log-likelihood of our
model and see the peak-to-valley to assess what variation we want to allow for a narrow bandwidth.

Once you’ve chosen the bandwidth that best fits your posteriors you can use them as priors for a MCMC fit. Link to
MCMC tutotial.

2.2.12 Fitting in different orbital bases

In this tutorial, we show how one can perform orbit-fits in different coordinate bases amongst the ones supported by
orbitize. Currently fitting in different bases is only supported in MCMC, so we will use MCMC to perform an
orbit-fit in an orbital basis distinct from the default one. For a general introduction to MCMC, be sure to check out the
MCMC Introduction tutorial first!

The “standard” and “XYZ” bases

The default way to define an orbit in orbitize is through what we call the ‘standard basis’, which consists of eight
parameters: semi-major axis (sma), eccentricity (ecc), inclination (inc), argument of periastron (aop), position angle
of the nodes (pan), epoch of periastron expressed as a fraction of the period past a reference epoch (tau), parallax (plx)
and total system mass (mtot). Each orbital element has an associated default prior; to see how to explore and modify
these priors check out the Modifying priors tutorial.

An alternative way to define an orbit is through its position and velocity components in XYZ space for a given epoch;
we will call this the ‘XYZ basis’. The orbit is thus defined with the array (𝑥, 𝑦, 𝑧, 𝑥̇, 𝑦̇,𝑧̇, plx, mtot), with position
coordinates measured in AU and velocity components in km s−1. In this basis, the sky-plane coordinates (𝑥, 𝑦) are the
separations of the planet relative to the primary, with the positive 𝑥 and 𝑦 directions coinciding with the positive RA
and Dec directions, respectively. The 𝑧 direction is the line-of-sight coordinate, such that movement in the positive 𝑧
direction causes a redshift. The default priors are uniform all uniform.

2.2. Tutorials 83

https://orbitize.readthedocs.io/en/latest/tutorials/MCMC_tutorial.html
http://orbitize.info/en/latest/tutorials/Modifying_Priors.html

orbitize Documentation

Setting up Sampler in the XYZ basis

The easiest way to run an orbit-fit in an alternative orbital basis in orbitize is through the orbitize.driver.Driver
interface. The process is exactly like initializing a regular Driver object, but setting the fitting_basis keyword to
‘XYZ’:

[1]: import numpy as np

import orbitize
from orbitize import driver
import multiprocessing as mp

filename = "{}xyz_test_data.csv".format(orbitize.DATADIR) # a file with input in radec␣
→˓since rn it only works for that

system parameters
num_secondary_bodies = 1
system_mass = 1.75 # [Msol]
plx = 51.44 # [mas]
mass_err = 0.05 # [Msol]
plx_err = 0.12 # [mas]

MCMC parameters
num_temps = 5
num_walkers = 20
num_threads = mp.cpu_count() # or a different number if you prefer

my_driver = driver.Driver(
filename, 'MCMC', num_secondary_bodies, system_mass, plx, mass_err=mass_err, plx_

→˓err=plx_err,
mcmc_kwargs={'num_temps': num_temps, 'num_walkers': num_walkers, 'num_threads': num_

→˓threads},
system_kwargs={'fitting_basis': 'XYZ'}

)

s = my_driver.sampler

Converting ra/dec data points in data_table to sep/pa. Original data are stored in input_
→˓table.

(Properly) initializing walkers in the XYZ basis

In the standard basis at this point we would be ready to use the s.run_sampler method to start the sampling, but with
the XYZ basis we have to make sure that all our walkers are initialized in a valid region of parameter space. This is
because randomly generated values of (𝑥, 𝑦, 𝑧, 𝑥̇, 𝑦̇, 𝑧̇) can result in unbound, invalid orbits with, for example, negative
eccentricities (which is not cool). This can be easily corrected with the s.validate_xyz_positions method:

[2]: s.validate_xyz_positions()

All walker positions validated.

/home/sblunt/Projects/orbitize/orbitize/basis.py:944: RuntimeWarning: invalid value␣
→˓encountered in arccos

(continues on next page)

84 Chapter 2. User Guide:

orbitize Documentation

(continued from previous page)

eanom = np.arccos(cos_eanom)
/data/user/sblunt/miniconda3/envs/python3.7/lib/python3.7/site-packages/astropy/units/
→˓quantity.py:481: RuntimeWarning: invalid value encountered in sqrt
result = super().__array_ufunc__(function, method, *arrays, **kwargs)

After this is done, the sampler can be run and the results saved normally:

[3]: total_orbits = 600 # number of steps x number of walkers (at lowest temperature)
burn_steps = 10 # steps to burn in per walker
thin = 2 # only save every 2nd step

s.run_sampler(total_orbits, burn_steps=burn_steps, thin=thin)
s.results.save_results('my_posterior.hdf5')

/data/user/sblunt/miniconda3/envs/python3.7/lib/python3.7/site-packages/astropy/table/
→˓column.py:1020: RuntimeWarning: invalid value encountered in greater
result = getattr(super(), op)(other)

/home/sblunt/Projects/orbitize/orbitize/kepler.py:112: RuntimeWarning: invalid value␣
→˓encountered in sqrt
tanom = 2.*np.arctan(np.sqrt((1.0 + ecc)/(1.0 - ecc))*np.tan(0.5*eanom))

Starting Burn in

/data/user/sblunt/miniconda3/envs/python3.7/lib/python3.7/site-packages/astropy/table/
→˓column.py:1020: RuntimeWarning: invalid value encountered in greater
result = getattr(super(), op)(other)

/home/sblunt/Projects/orbitize/orbitize/kepler.py:112: RuntimeWarning: invalid value␣
→˓encountered in sqrt
tanom = 2.*np.arctan(np.sqrt((1.0 + ecc)/(1.0 - ecc))*np.tan(0.5*eanom))

/data/user/sblunt/miniconda3/envs/python3.7/lib/python3.7/site-packages/astropy/table/
→˓column.py:1020: RuntimeWarning: invalid value encountered in greater
result = getattr(super(), op)(other)

/home/sblunt/Projects/orbitize/orbitize/kepler.py:112: RuntimeWarning: invalid value␣
→˓encountered in sqrt
tanom = 2.*np.arctan(np.sqrt((1.0 + ecc)/(1.0 - ecc))*np.tan(0.5*eanom))

/data/user/sblunt/miniconda3/envs/python3.7/lib/python3.7/site-packages/astropy/table/
→˓column.py:1020: RuntimeWarning: invalid value encountered in greater
result = getattr(super(), op)(other)

/home/sblunt/Projects/orbitize/orbitize/kepler.py:112: RuntimeWarning: invalid value␣
→˓encountered in sqrt
tanom = 2.*np.arctan(np.sqrt((1.0 + ecc)/(1.0 - ecc))*np.tan(0.5*eanom))

/data/user/sblunt/miniconda3/envs/python3.7/lib/python3.7/site-packages/astropy/table/
→˓column.py:1020: RuntimeWarning: invalid value encountered in greater
result = getattr(super(), op)(other)

/home/sblunt/Projects/orbitize/orbitize/kepler.py:112: RuntimeWarning: invalid value␣
→˓encountered in sqrt
tanom = 2.*np.arctan(np.sqrt((1.0 + ecc)/(1.0 - ecc))*np.tan(0.5*eanom))

/data/user/sblunt/miniconda3/envs/python3.7/lib/python3.7/site-packages/astropy/table/
→˓column.py:1020: RuntimeWarning: invalid value encountered in greater
result = getattr(super(), op)(other)

/home/sblunt/Projects/orbitize/orbitize/kepler.py:112: RuntimeWarning: invalid value␣
→˓encountered in sqrt

(continues on next page)

2.2. Tutorials 85

orbitize Documentation

(continued from previous page)

tanom = 2.*np.arctan(np.sqrt((1.0 + ecc)/(1.0 - ecc))*np.tan(0.5*eanom))
/data/user/sblunt/miniconda3/envs/python3.7/lib/python3.7/site-packages/astropy/table/
→˓column.py:1020: RuntimeWarning: invalid value encountered in greater
result = getattr(super(), op)(other)

/home/sblunt/Projects/orbitize/orbitize/kepler.py:112: RuntimeWarning: invalid value␣
→˓encountered in sqrt
tanom = 2.*np.arctan(np.sqrt((1.0 + ecc)/(1.0 - ecc))*np.tan(0.5*eanom))

/data/user/sblunt/miniconda3/envs/python3.7/lib/python3.7/site-packages/astropy/table/
→˓column.py:1020: RuntimeWarning: invalid value encountered in greater
result = getattr(super(), op)(other)

/home/sblunt/Projects/orbitize/orbitize/kepler.py:112: RuntimeWarning: invalid value␣
→˓encountered in sqrt
tanom = 2.*np.arctan(np.sqrt((1.0 + ecc)/(1.0 - ecc))*np.tan(0.5*eanom))

/data/user/sblunt/miniconda3/envs/python3.7/lib/python3.7/site-packages/astropy/table/
→˓column.py:1020: RuntimeWarning: invalid value encountered in greater
result = getattr(super(), op)(other)

/home/sblunt/Projects/orbitize/orbitize/kepler.py:112: RuntimeWarning: invalid value␣
→˓encountered in sqrt
tanom = 2.*np.arctan(np.sqrt((1.0 + ecc)/(1.0 - ecc))*np.tan(0.5*eanom))

/data/user/sblunt/miniconda3/envs/python3.7/lib/python3.7/site-packages/astropy/table/
→˓column.py:1020: RuntimeWarning: invalid value encountered in greater
result = getattr(super(), op)(other)

/home/sblunt/Projects/orbitize/orbitize/kepler.py:112: RuntimeWarning: invalid value␣
→˓encountered in sqrt
tanom = 2.*np.arctan(np.sqrt((1.0 + ecc)/(1.0 - ecc))*np.tan(0.5*eanom))

10/10 steps of burn-in complete
Burn in complete. Sampling posterior now.

/data/user/sblunt/miniconda3/envs/python3.7/lib/python3.7/site-packages/astropy/table/
→˓column.py:1020: RuntimeWarning: invalid value encountered in greater
result = getattr(super(), op)(other)

/home/sblunt/Projects/orbitize/orbitize/kepler.py:112: RuntimeWarning: invalid value␣
→˓encountered in sqrt
tanom = 2.*np.arctan(np.sqrt((1.0 + ecc)/(1.0 - ecc))*np.tan(0.5*eanom))

/data/user/sblunt/miniconda3/envs/python3.7/lib/python3.7/site-packages/astropy/table/
→˓column.py:1020: RuntimeWarning: invalid value encountered in greater
result = getattr(super(), op)(other)

/home/sblunt/Projects/orbitize/orbitize/kepler.py:112: RuntimeWarning: invalid value␣
→˓encountered in sqrt
tanom = 2.*np.arctan(np.sqrt((1.0 + ecc)/(1.0 - ecc))*np.tan(0.5*eanom))

/data/user/sblunt/miniconda3/envs/python3.7/lib/python3.7/site-packages/astropy/table/
→˓column.py:1020: RuntimeWarning: invalid value encountered in greater
result = getattr(super(), op)(other)

/home/sblunt/Projects/orbitize/orbitize/kepler.py:112: RuntimeWarning: invalid value␣
→˓encountered in sqrt
tanom = 2.*np.arctan(np.sqrt((1.0 + ecc)/(1.0 - ecc))*np.tan(0.5*eanom))

86 Chapter 2. User Guide:

orbitize Documentation

/data/user/sblunt/miniconda3/envs/python3.7/lib/python3.7/site-packages/astropy/table/
→˓column.py:1020: RuntimeWarning: invalid value encountered in greater
result = getattr(super(), op)(other)

/home/sblunt/Projects/orbitize/orbitize/kepler.py:112: RuntimeWarning: invalid value␣
→˓encountered in sqrt
tanom = 2.*np.arctan(np.sqrt((1.0 + ecc)/(1.0 - ecc))*np.tan(0.5*eanom))

/data/user/sblunt/miniconda3/envs/python3.7/lib/python3.7/site-packages/astropy/table/
→˓column.py:1020: RuntimeWarning: invalid value encountered in greater
result = getattr(super(), op)(other)

/home/sblunt/Projects/orbitize/orbitize/kepler.py:112: RuntimeWarning: invalid value␣
→˓encountered in sqrt
tanom = 2.*np.arctan(np.sqrt((1.0 + ecc)/(1.0 - ecc))*np.tan(0.5*eanom))

/data/user/sblunt/miniconda3/envs/python3.7/lib/python3.7/site-packages/astropy/table/
→˓column.py:1020: RuntimeWarning: invalid value encountered in greater
result = getattr(super(), op)(other)

/home/sblunt/Projects/orbitize/orbitize/kepler.py:112: RuntimeWarning: invalid value␣
→˓encountered in sqrt
tanom = 2.*np.arctan(np.sqrt((1.0 + ecc)/(1.0 - ecc))*np.tan(0.5*eanom))

/data/user/sblunt/miniconda3/envs/python3.7/lib/python3.7/site-packages/astropy/table/
→˓column.py:1020: RuntimeWarning: invalid value encountered in greater
result = getattr(super(), op)(other)

/home/sblunt/Projects/orbitize/orbitize/kepler.py:112: RuntimeWarning: invalid value␣
→˓encountered in sqrt
tanom = 2.*np.arctan(np.sqrt((1.0 + ecc)/(1.0 - ecc))*np.tan(0.5*eanom))

/data/user/sblunt/miniconda3/envs/python3.7/lib/python3.7/site-packages/astropy/table/
→˓column.py:1020: RuntimeWarning: invalid value encountered in greater
result = getattr(super(), op)(other)

/home/sblunt/Projects/orbitize/orbitize/kepler.py:112: RuntimeWarning: invalid value␣
→˓encountered in sqrt
tanom = 2.*np.arctan(np.sqrt((1.0 + ecc)/(1.0 - ecc))*np.tan(0.5*eanom))

/data/user/sblunt/miniconda3/envs/python3.7/lib/python3.7/site-packages/astropy/table/
→˓column.py:1020: RuntimeWarning: invalid value encountered in greater
result = getattr(super(), op)(other)

/home/sblunt/Projects/orbitize/orbitize/kepler.py:112: RuntimeWarning: invalid value␣
→˓encountered in sqrt
tanom = 2.*np.arctan(np.sqrt((1.0 + ecc)/(1.0 - ecc))*np.tan(0.5*eanom))

/data/user/sblunt/miniconda3/envs/python3.7/lib/python3.7/site-packages/astropy/table/
→˓column.py:1020: RuntimeWarning: invalid value encountered in greater
result = getattr(super(), op)(other)

/home/sblunt/Projects/orbitize/orbitize/kepler.py:112: RuntimeWarning: invalid value␣
→˓encountered in sqrt
tanom = 2.*np.arctan(np.sqrt((1.0 + ecc)/(1.0 - ecc))*np.tan(0.5*eanom))

/data/user/sblunt/miniconda3/envs/python3.7/lib/python3.7/site-packages/astropy/table/
→˓column.py:1020: RuntimeWarning: invalid value encountered in greater
result = getattr(super(), op)(other)

/home/sblunt/Projects/orbitize/orbitize/kepler.py:112: RuntimeWarning: invalid value␣
→˓encountered in sqrt
tanom = 2.*np.arctan(np.sqrt((1.0 + ecc)/(1.0 - ecc))*np.tan(0.5*eanom))

/data/user/sblunt/miniconda3/envs/python3.7/lib/python3.7/site-packages/astropy/table/
(continues on next page)

2.2. Tutorials 87

orbitize Documentation

(continued from previous page)

→˓column.py:1020: RuntimeWarning: invalid value encountered in greater
result = getattr(super(), op)(other)

/home/sblunt/Projects/orbitize/orbitize/kepler.py:112: RuntimeWarning: invalid value␣
→˓encountered in sqrt
tanom = 2.*np.arctan(np.sqrt((1.0 + ecc)/(1.0 - ecc))*np.tan(0.5*eanom))

/data/user/sblunt/miniconda3/envs/python3.7/lib/python3.7/site-packages/astropy/table/
→˓column.py:1020: RuntimeWarning: invalid value encountered in greater
result = getattr(super(), op)(other)

/home/sblunt/Projects/orbitize/orbitize/kepler.py:112: RuntimeWarning: invalid value␣
→˓encountered in sqrt
tanom = 2.*np.arctan(np.sqrt((1.0 + ecc)/(1.0 - ecc))*np.tan(0.5*eanom))

/data/user/sblunt/miniconda3/envs/python3.7/lib/python3.7/site-packages/astropy/table/
→˓column.py:1020: RuntimeWarning: invalid value encountered in greater
result = getattr(super(), op)(other)

/home/sblunt/Projects/orbitize/orbitize/kepler.py:112: RuntimeWarning: invalid value␣
→˓encountered in sqrt
tanom = 2.*np.arctan(np.sqrt((1.0 + ecc)/(1.0 - ecc))*np.tan(0.5*eanom))

/data/user/sblunt/miniconda3/envs/python3.7/lib/python3.7/site-packages/astropy/table/
→˓column.py:1020: RuntimeWarning: invalid value encountered in greater
result = getattr(super(), op)(other)

/home/sblunt/Projects/orbitize/orbitize/kepler.py:112: RuntimeWarning: invalid value␣
→˓encountered in sqrt
tanom = 2.*np.arctan(np.sqrt((1.0 + ecc)/(1.0 - ecc))*np.tan(0.5*eanom))

/data/user/sblunt/miniconda3/envs/python3.7/lib/python3.7/site-packages/astropy/table/
→˓column.py:1020: RuntimeWarning: invalid value encountered in greater
result = getattr(super(), op)(other)

/home/sblunt/Projects/orbitize/orbitize/kepler.py:112: RuntimeWarning: invalid value␣
→˓encountered in sqrt
tanom = 2.*np.arctan(np.sqrt((1.0 + ecc)/(1.0 - ecc))*np.tan(0.5*eanom))

/data/user/sblunt/miniconda3/envs/python3.7/lib/python3.7/site-packages/astropy/table/
→˓column.py:1020: RuntimeWarning: invalid value encountered in greater
result = getattr(super(), op)(other)

/home/sblunt/Projects/orbitize/orbitize/kepler.py:112: RuntimeWarning: invalid value␣
→˓encountered in sqrt
tanom = 2.*np.arctan(np.sqrt((1.0 + ecc)/(1.0 - ecc))*np.tan(0.5*eanom))

/data/user/sblunt/miniconda3/envs/python3.7/lib/python3.7/site-packages/astropy/table/
→˓column.py:1020: RuntimeWarning: invalid value encountered in greater
result = getattr(super(), op)(other)

/home/sblunt/Projects/orbitize/orbitize/kepler.py:112: RuntimeWarning: invalid value␣
→˓encountered in sqrt
tanom = 2.*np.arctan(np.sqrt((1.0 + ecc)/(1.0 - ecc))*np.tan(0.5*eanom))

30/30 steps completed
Run complete

88 Chapter 2. User Guide:

orbitize Documentation

Loading and converting results

You can load the results as you normally would. The orbit posteriors are saved in the results.post attribute, and the
basis you used for the fit in the results.fitting_basis attribute:

[4]: myResults = orbitize.results.Results() # create empty Results object
myResults.load_results('my_posterior.hdf5')
print('The used basis for the fit was ', myResults.fitting_basis)
print('The posteriors are ', myResults.post)

Converting ra/dec data points in data_table to sep/pa. Original data are stored in input_
→˓table.
The used basis for the fit was XYZ
The posteriors are [[-1.55895340e+01 -3.20352269e+01 9.38119986e+00 ... -7.46195838e-03

5.15299823e+01 1.72400897e+00]
[-1.56081092e+01 -3.20562773e+01 1.49810951e+00 ... 8.53387015e-02
5.13883909e+01 1.73579787e+00]

[-1.55612462e+01 -3.20801251e+01 -2.96308303e-01 ... 7.18261775e-01
5.14206555e+01 1.76608956e+00]

...
[-1.55671475e+01 -3.20089823e+01 3.62094122e+01 ... 3.72598271e-01
5.15487665e+01 1.74432532e+00]

[-1.55794884e+01 -3.20303979e+01 2.75912018e+01 ... -2.40407388e-01
5.14895599e+01 1.78876637e+00]

[-1.55837449e+01 -3.20532712e+01 1.93382300e+01 ... -1.24185021e-01
5.14598433e+01 1.80483891e+00]]

Let’s convert back to the good old standard basis:

[5]: xyz_posterior = myResults.post

standard_posterior = myResults.system.basis.to_standard_basis(xyz_posterior)

print('My posterior in standard basis is ', standard_posterior)

My posterior in standard basis is [[7.89543529 6.92670011 4.84646336 ... 0.
→˓36153132 -6.60018059

1.52254522]
[1.00000429 1.00000659 0.96238341 ... 1.00053929 1.00014326

0.9999977]
[1.43499876 1.22274162 0.79516331 ... 1.46937244 2.46248534

1.23409917]
...
[-15.56714749 -32.00898233 36.20941224 ... 0.37259827 51.54876654

1.74432532]
[-15.57948843 -32.03039793 27.59120179 ... -0.24040739 51.48955988

1.78876637]
[-15.58374489 -32.0532712 19.33822997 ... -0.12418502 51.45984325

1.80483891]]

And we’re done! Enjoy the XYZ basis.

2.2. Tutorials 89

orbitize Documentation

2.2.13 Working with the Hipparcos Intermediate Astrometric Data (IAD)

Sarah Blunt (2021)

The Hipparcos IAD are notoriously annoying to work with, and several methods have been developed for incorporating
them into orbit-fits. In this tutorial, we’ll take you through the method outlined in Nielsen et al. (2020). In the near
future, we’ll add in other algorithms (in particular, that of Brandt et al.).

The purpose of this tutorial is not to convince you that one method is better than the other, but rather to teach you to
use the method of Nielsen et al. I recommend reading through Section 3.1 of Nielsen et al. (2020) before diving into
this tutorial.

If you want to skip right to “what’s the syntax for doing an orbit-fit with the IAD,” I suggest checking out the beta
Pictoris end-to-end test I coded up here.

This tutorial will take you through: - Obtaining the IAD for your object(s). - Refitting the IAD (i.e. re-doing the fit the
Hipparcos team did), which allows you to evaluate whether they are suitable for orbit-fitting. - Incorporating the IAD
into your orbit-fit.

Part 1: Obtaining the IAD

orbitize! assumes the IAD are an updated version of the van Leeuwen (2007) re-reduction. You can learn about the
data here, and download them here. Note that this download will take ~350 MB of space; if you prefer to to keep the
data necessary for a few fits, you can download all the data and remove unnecessary files (or just send me an email).
We’ve provided the IAD files for a few representative systems in this repository.

NOTE: if you prefer to use the DVD files, orbitize! can handle those as well. However, be warned that these files
do not mark rejected scans.

The good news is that the hard part is actually getting the data. Once you have the file, orbitize! can read it in its
raw form.

Part 2: Refitting the IAD

Once you have the IAD, the next step is to convince yourself that they’re suitable for orbit-fitting (i.e. free of transcrip-
tion errors, etc). Here’s a handy function to do this (this should take a few mins to run, but if it’s taking much longer,
you can decrease the number of steps). This code reproduces the test at the end of Section 3.1 of Nielsen et al. (2020),
so check that out for more information.

[1]: import orbitize
import os
from datetime import datetime

from orbitize.hipparcos import nielsen_iad_refitting_test

The Hipparcos ID of your target. Available on Simbad.
hip_num = "027321"

Name/path for the plot this function will make
saveplot = "bPic_IADrefit.png"

Location of the Hipparcos IAD file.
IAD_file = "{}H{}.d".format(orbitize.DATADIR, hip_num)

These `emcee` settings are sufficient for the 5-parameter fits we're about to run,
(continues on next page)

90 Chapter 2. User Guide:

https://ui.adsabs.harvard.edu/abs/2020AJ....159...71N/abstract
https://ui.adsabs.harvard.edu/abs/2021ApJS..254...42B/abstract
https://github.com/sblunt/orbitize/blob/main/tests/end-to-end-tests/betaPic_hipIAD.py
https://ui.adsabs.harvard.edu/abs/2007ASSL..350.....V/abstract
https://www.cosmos.esa.int/web/hipparcos/hipparcos-2
https://www.cosmos.esa.int/documents/532822/6470227/ResRec_JavaTool_2014.zip/a58ad12e-cffb-f959-0ed5-2ae26899f61a?t=1631109433177&download=true
https://sites.google.com/g.harvard.edu/sarah/contact

orbitize Documentation

(continued from previous page)

although I'd probably run it for 5,000-10,000 steps if I wanted to publish it.
burn_steps = 100
mcmc_steps = 100

start = datetime.now()

run the fit
nielsen_iad_refitting_test(

IAD_file,
hip_num=hip_num,
saveplot=saveplot,
burn_steps=burn_steps,
mcmc_steps=mcmc_steps,

)

end = datetime.now()
duration_mins = (end - start).total_seconds() / 60

print("Done! This fit took {:.1f} mins on my machine.".format(duration_mins))

If you don't want to save the plot, you can run this line to remove it
_ = os.system("rm {}".format(saveplot))

Go get a coffee. This will take a few mins! :)
Starting burn-in!
Starting production chain!
Done! This fit took 3.1 mins on my machine.

2.2. Tutorials 91

orbitize Documentation

92 Chapter 2. User Guide:

orbitize Documentation

Part 3: Using the IAD in your Orbit-fit

Congrats, you’ve now reproduced a Hipparcos fit! The last thing to do is actually run your orbit-fit. Here’s an example,
also using the Gaia astrometric point from eDR3. This code snippet essentially repeats the beta Pictoris end-to-end test
I coded up here.

[2]: import os.path
import orbitize
from orbitize import read_input, hipparcos, gaia, system, priors, sampler

"""
As with most `orbitize!` fits, we'll start by reading in our data file. The
Hipparcos data file is kept separate; your main data file only needs to contain
the relative astrometry and RVs you're using in your fit.
"""

input_file = os.path.join(orbitize.DATADIR, "betaPic.csv")
data_table = read_input.read_file(input_file)

"""
Next, we'll instantiate a `HipparcosLogProb` object.
"""
num_secondary_bodies = 1 # number of planets/companions orbiting your primary
hipparcos_number = "027321" # (can look up your object's Hipparcos ID on Simbad)
hipparcos_filename = os.path.join(

orbitize.DATADIR, "H027321.d"
) # location of your IAD data file

betaPic_Hip = hipparcos.HipparcosLogProb(
hipparcos_filename, hipparcos_number, num_secondary_bodies

)

"""
Next, instantiate a `GaiaLogProb` object.
"""
betapic_edr3_number = 4792774797545800832
betaPic_Gaia = gaia.GaiaLogProb(betapic_edr3_number, betaPic_Hip, dr="edr3")

"""
Next, we'll instantiate a `System` object, a container for all the information
relevant to the system you're fitting.
"""

m0 = 1.75 # median mass of primary [M_sol]
plx = 51.5 # [mas]
fit_secondary_mass = True # Tell orbitize! we want to get dynamical masses
(not possible with only relative astrometry).
mass_err = 0.01 # we'll overwrite these in a sec
plx_err = 0.01

betaPic_system = system.System(
num_secondary_bodies,
data_table,

(continues on next page)

2.2. Tutorials 93

https://github.com/sblunt/orbitize/blob/main/tests/end-to-end-tests/betaPic_hipIAD.py

orbitize Documentation

(continued from previous page)

m0,
plx,
hipparcos_IAD=betaPic_Hip,
gaia=betaPic_Gaia,
fit_secondary_mass=fit_secondary_mass,
mass_err=mass_err,
plx_err=plx_err,

)

"""
If you'd like to change any priors from the defaults (given in Blunt et al. 2020),
do it like this:
"""

set uniform parallax prior
plx_index = betaPic_system.param_idx["plx"]
betaPic_system.sys_priors[plx_index] = priors.UniformPrior(plx - 1.0, plx + 1.0)

set uniform primary mass prior
m0_index = betaPic_system.param_idx["m0"]
betaPic_system.sys_priors[m0_index] = priors.UniformPrior(1.5, 2.0)

INFO: Query finished. [astroquery.utils.tap.core]

Finally, set up and run your MCMC!

[3]: """
These are the MCMC parameters I'd use if I were publishing this fit.
This would take a while to run (takes about a day on my machine).
"""
num_threads = 50
num_temps = 20
num_walkers = 1000
num_steps = 10000000 # n_walkers x n_steps_per_walker
burn_steps = 10000
thin = 100

"""
Here are some parameters you can use for the tutorial. These chains will not
be converged.
"""

num_threads = 1
num_temps = 1
num_walkers = 100
num_steps = 10 # n_walkers x n_steps_per_walker
burn_steps = 10
thin = 1

betaPic_sampler = sampler.MCMC(
betaPic_system,
num_threads=num_threads,
num_temps=num_temps,

(continues on next page)

94 Chapter 2. User Guide:

orbitize Documentation

(continued from previous page)

num_walkers=num_walkers,
)
betaPic_sampler.run_sampler(num_steps, burn_steps=burn_steps, thin=thin)

Starting Burn in

/home/sblunt/Projects/orbitize/orbitize/priors.py:354: RuntimeWarning: invalid value␣
→˓encountered in log
lnprob = -np.log((element_array*normalizer))

/home/sblunt/Projects/orbitize/orbitize/priors.py:463: RuntimeWarning: invalid value␣
→˓encountered in log
lnprob = np.log(np.sin(element_array)/normalization)

10/10 steps of burn-in complete
Burn in complete. Sampling posterior now.

Run complete

[3]: <emcee.ensemble.EnsembleSampler at 0x7f2f2e3a2650>

[4]: # make corner plot
fig = betaPic_sampler.results.plot_corner()

WARNING:root:Too few points to create valid contours
WARNING:root:Too few points to create valid contours
WARNING:root:Too few points to create valid contours
WARNING:root:Too few points to create valid contours
WARNING:root:Too few points to create valid contours
WARNING:root:Too few points to create valid contours
WARNING:root:Too few points to create valid contours
WARNING:root:Too few points to create valid contours
WARNING:root:Too few points to create valid contours
WARNING:root:Too few points to create valid contours
WARNING:root:Too few points to create valid contours
WARNING:root:Too few points to create valid contours
WARNING:root:Too few points to create valid contours
WARNING:root:Too few points to create valid contours
WARNING:root:Too few points to create valid contours
WARNING:root:Too few points to create valid contours
WARNING:root:Too few points to create valid contours
WARNING:root:Too few points to create valid contours
WARNING:root:Too few points to create valid contours
WARNING:root:Too few points to create valid contours
WARNING:root:Too few points to create valid contours
WARNING:root:Too few points to create valid contours
WARNING:root:Too few points to create valid contours
WARNING:root:Too few points to create valid contours
WARNING:root:Too few points to create valid contours
WARNING:root:Too few points to create valid contours
WARNING:root:Too few points to create valid contours
WARNING:root:Too few points to create valid contours
WARNING:root:Too few points to create valid contours
WARNING:root:Too few points to create valid contours
WARNING:root:Too few points to create valid contours

(continues on next page)

2.2. Tutorials 95

orbitize Documentation

(continued from previous page)

WARNING:root:Too few points to create valid contours
WARNING:root:Too few points to create valid contours
WARNING:root:Too few points to create valid contours
WARNING:root:Too few points to create valid contours
WARNING:root:Too few points to create valid contours
WARNING:root:Too few points to create valid contours
WARNING:root:Too few points to create valid contours
WARNING:root:Too few points to create valid contours
WARNING:root:Too few points to create valid contours
WARNING:root:Too few points to create valid contours
WARNING:root:Too few points to create valid contours
WARNING:root:Too few points to create valid contours
WARNING:root:Too few points to create valid contours
WARNING:root:Too few points to create valid contours
WARNING:root:Too few points to create valid contours
WARNING:root:Too few points to create valid contours
WARNING:root:Too few points to create valid contours
WARNING:root:Too few points to create valid contours
WARNING:root:Too few points to create valid contours
WARNING:root:Too few points to create valid contours
WARNING:root:Too few points to create valid contours
WARNING:root:Too few points to create valid contours
WARNING:root:Too few points to create valid contours
WARNING:root:Too few points to create valid contours
WARNING:root:Too few points to create valid contours
WARNING:root:Too few points to create valid contours

96 Chapter 2. User Guide:

orbitize Documentation

2.3 Frequently Asked Questions

Here are some questions we get often. Please suggest more by raising an issue in the Github Issue Tracker.

What does this orbital parameter mean?

We think the best way to understand the orbital parameters is to see how they affect the orbit visually. Play around with
this interactive orbital elements notebook (you’ll need to run on your machine).

What is and how is it related to epoch of periastron?

We use to define the epoch of periastron as we do not know when periastron will be for many of our directly imaged
planets. A detailed description of how is related to other quantities such as 𝑡𝑝 is available:

2.3. Frequently Asked Questions 97

https://github.com/sblunt/orbitize/issues
https://github.com/sblunt/orbitize/blob/main/docs/tutorials/show-me-the-orbit.ipynb

orbitize Documentation

2.3.1 𝜏 and Time of Periastron

Here, we will discuss what exactly is 𝜏 , the parameter orbitize! uses to parametrize the epoch of periastron, and
how it is related to other quantities of the epoch of periastron in the literature.

Time of Periastron and Motivation for 𝜏

The time (or epoch) of periastron is an important quantity for describing an orbit. It defines when the two orbiting
bodies are closest to one another (i.e., when a planet is closest to its star). In many papers in the literature, the epoch of
periastron is described by 𝑡𝑝, which is literally a date at which periastron occurs. This is a very important date because
we use this date to anchor our orbit in time.

The value of 𝑡𝑝 is well constrained when we know we observed periastron, which is often the case for radial velociy
or transiting exoplanets when the orbital periods are short and our data covers a full orbital period. In those cases,
we know approximately when 𝑡𝑝 should be in time, so it is easy to define prior bounds for it. However, in the case
of direct imaging, many of our companions have orbital periods that are orders of magnitude larger than the current
orbital coverage of the data where we do not really know if the next periastron is in years, decades, centuries, or even
millennia. This is the motivation for 𝜏 .

Definition of 𝜏

𝜏 is a dimentionless quantity between 0 and 1 defined with respect to a reference epoch 𝑡𝑟𝑒𝑓 . For a planet that has a 𝑡𝑝
and an orbital period (P), then we define 𝜏 as:

𝜏 =
𝑡𝑝 − 𝑡𝑟𝑒𝑓

𝑃
.

Because 𝜏 is always between 0 and 1, it is easy to figure out the bounds of 𝜏 whereas if the orbital period is highly
uncertain, it may be difficult to put bounds on 𝑡𝑝 that would encompass all allowable bound orbits.

Relation to 𝑡𝑝

As seen in the above equation, it is relatively straightforward to covert between orbital parameter sets that use 𝜏 and 𝑡𝑝.
You just need to know the orbital period and reference epoch. In orbitize!, both the System class and the Results
class has the attribute tau_ref_epoch which stores 𝑡𝑟𝑒𝑓 , so there should always be a convenient way to grab this
number. By default, we use 𝑡𝑟𝑒𝑓 = 58849 MJD.

One thing to note that is a given orbit has only a single valid 𝜏 , but that an orbit can be defined by many 𝑡𝑝, since the
orbit is periodic. Thus, 𝑡𝑝 + 𝑃 is another valid time of periastron.

We also provide some helper functions to covert between 𝑡𝑝 and 𝜏

[1]: import numpy as np
import orbitize.basis

How to get orbital period in the orbitize! standard basis
sma = 9 # au, semi-major axis
mtot = 1.2 # Solar masses, total mass
period = np.sqrt(sma**3/mtot) # years, period

tau = 0.2
tau_ref_epoch = 58849

convert tau to tp
(continues on next page)

98 Chapter 2. User Guide:

orbitize Documentation

(continued from previous page)

tp = orbitize.basis.tau_to_tp(tau, tau_ref_epoch, period)

print(tp)

convert tp back to tau
tau2 = orbitize.basis.tp_to_tau(tp, tau_ref_epoch, period)

print(tau2)

convert tau to tp, but pick the first tp after MJD = 0
tp_new = orbitize.basis.tau_to_tp(tau, tau_ref_epoch, period, after_date=0)

print(tp_new)

60649.50097715886
0.2000000000000002
6634.471662393138

Relation to Mean Anomaly

The mean anomaly (M) of an orbit describes the current orbital phase of a planet. M goes from 0 to 2𝜋, and M =
0 means the planet is at periastron. Unlike 𝑡𝑝 and 𝜏 which describe the epoch of periastron, M describes the current
position of the planet in its orbit.

To compute M of a planet at some time t, we have provided the following helper function:

[2]: # Use the orbit defined in the previous example

t = 60000 # time in MJD when we want to know the M of the particle

M = orbitize.basis.tau_to_manom(t, sma, mtot, tau, tau_ref_epoch)

print(M)

now compute M for periastron
M_peri = orbitize.basis.tau_to_manom(tp, sma, mtot, tau, tau_ref_epoch)

print(M_peri)

5.829874251150844
1.3951473992034527e-15

Why is the default prior on inclination a sine prior?

Our goal with the default prior is to have an isotropic distribution of the orbital plane. To obtain this, we use inclination
and position angle of the ascending node (PAN) to define the orbital plane. They actually coorespond to the two angles
in a spherical coordinate system: inclinaion is the polar angle and PAN is the azimuthal angle. Becuase of this choice
of coordinates, there are less orbital configurations near the poles (when inclination is near 0 or 180), so we use a sine
prior to downweigh those areas to give us an isotropic distribution. A more detailed discussion of this is here:

2.3. Frequently Asked Questions 99

orbitize Documentation

2.3.2 Defining the orbital plane with 𝑖 and Ω

(Jason Wang, 2021)

Here we discuss how the orbit plane orientation is defined. We also encourage you to play around with this interactive
orbital elements notebook to get a feel for the orbital elements. Also note that we refer to the values of the angles in
degrees when discussing them but all angles are in radians in orbitize!.

Inclination (𝑖) and Position angle of the Ascending Node (PAN; Ω) define the plane of the orbit in the sky. Inclination
describes the tilt of the orbital plane relative to the plane in the sky, and PAN describes the rotation of the line of nodes,
which is the intersection between the orbital plane and the plane of the sky.

An intuitive way to think about it is in terms of spherical coordinates. 𝑖 is equivalent to 𝜃 (range from 0 to 180 deg),
and Ω is equivalent to 𝜙 (range from 0 to 360 deg) in common spherical notation. The sphere in this case is tilted, with
one of the poles pointed towards us.

Why do we use a sine prior on inclination?

You might also hear about using a uniform prior in cos(𝑖), which is an equivalent statement. We use a sine prior
on inclination because our ultimate goal is to have an isotropic prior on the orbital plane, and due to how we choose
coordiantes, this becomes a sine prior on inclination. We can go through some math/visual explaination, but the
easiest is perhaps seeing the distribution of orbital plane orientations on a sphere. We use the orbital plane normal
(perpendicular vector from the orbit plane) to define the orientation of the plane in 3D space. The normal points to a
single point on a unit sphere. Isotropic distributions will uniformly cover the unit sphere.

In the exercise below, if we randomly draw orbital plane orientations using either an uniform or sine prior for inclination,
you’ll see that the uniform prior causes more points to cluster near the poles, whereas the sine prior is more uniform.
Note that generally the edges of the sphere look darker merely due to a viewing angle effect.

[4]: import numpy as np
import matplotlib.pylab as plt
from orbitize.priors import UniformPrior, SinPrior
%matplotlib inline

def spherical_to_xyz(theta, phi, rho=1):
"""
Transformation with theta and phi in radians
"""
z = rho * np.cos(theta)
x = rho * np.sin(theta) * np.cos(phi)
y = rho * np.sin(theta) * np.sin(phi)
return x,y,z

fig = plt.figure()

try a uniform distribution in both
ax1 = fig.add_subplot(121, projection='3d')

inc_uni_prior = UniformPrior(0, np.pi)
pan_uni_prior = UniformPrior(0, 2*np.pi)

incs_uni = inc_uni_prior.draw_samples(2000)
pan_uni = pan_uni_prior.draw_samples(2000)

x_uni, y_uni, z_uni = spherical_to_xyz(incs_uni, pan_uni)
(continues on next page)

100 Chapter 2. User Guide:

https://github.com/sblunt/orbitize/blob/main/docs/tutorials/show-me-the-orbit.ipynb
https://github.com/sblunt/orbitize/blob/main/docs/tutorials/show-me-the-orbit.ipynb

orbitize Documentation

(continued from previous page)

ax1.plot(x_uni, y_uni, z_uni, 'b.', alpha=0.1)
ax1.set_title("Uniform in inc")

try a sine distribution for inclination
ax2 = fig.add_subplot(122, projection='3d')

inc_sine_prior = SinPrior()

incs_sine = inc_sine_prior.draw_samples(2000)

x_uni, y_uni, z_uni = spherical_to_xyz(incs_sine, pan_uni)
ax2.plot(x_uni, y_uni, z_uni, 'b.', alpha=0.1)
ax2.set_title("Sine in inc")

[4]: Text(0.5, 0.92, 'Sine in inc')

What do the values of 𝑖 mean?

Inclination in orbitize! is defined to go from 0 to 180 degrees. Some other places use -90 to 90 instead, but -90 to 0
is the same as 90 to 180. There are actual a couple of quick things to learn about the orbit from the value of inclination.
Here is a summary:

• 𝑖 = 0∘ : orbit is face-on and body orbits counterclockwise in the sky (North-up, East-left)

• 0∘ < 𝑖 < 90∘ : orbit is inclined and body orbits counterclockwise in the sky (North-up, East-left)

• 𝑖 = 90∘ : orbit is viewed edge-on

• 90∘ < 𝑖 < 180∘ : orbit is inclined and body orbits clockwise in the sky (North-up, East-left)

• 𝑖 = 180∘ : orbit is face-on and body orbits clockwise in the sky (North-up, East-left)

Here are some examples below:

[5]: from orbitize.kepler import calc_orbit

sma = 1
ecc, pan, aop, plx, mtot = 0, 0, 0, 1, 1
tau = 0.3

incs = np.radians([0, 45, 90, 135, 180])
(continues on next page)

2.3. Frequently Asked Questions 101

orbitize Documentation

(continued from previous page)

all_eps = np.linspace(0, 365.25, 200)
arc_eps = np.linspace(0, 75, 75)

fig = plt.figure(figsize=(15,4))
for i, inc in enumerate(incs):

ax = fig.add_subplot(1, 5, i+1)

all_ras, all_decs, _ = calc_orbit(all_eps, sma, ecc, inc, aop, pan, tau, plx, mtot,␣
→˓tau_ref_epoch=0)

ax.plot(all_ras, all_decs, 'k--', alpha=0.5)

arc_ras, arc_decs, _ = calc_orbit(arc_eps, sma, ecc, inc, aop, pan, tau, plx, mtot,␣
→˓tau_ref_epoch=0)

ax.plot(arc_ras, arc_decs, 'b-', linewidth=2)
ax.plot(arc_ras[-1], arc_decs[-1], 'bo', markersize=7)

ax.set_title("i = {0:d} deg".format(int(np.degrees(inc))))
ax.set_aspect("equal")
ax.set_xlim([1.1, -1.1])
ax.set_ylim([-1.1, 1.1])
ax.set_xlabel("RA")
ax.set_ylabel("Dec")

fig.tight_layout()

What do the values of Ω mean?

Ω or PAN defines the rotation of the orbit in the plane of the sky. Increasing PAN will rotate your orbit counterclockwise
in the sky. Here are some examples:

[6]: sma = 1
ecc, aop, plx, mtot = 0, 0, 1, 1
inc = np.pi/4 # 45 degrees
tau = 0.3

pans = np.radians([0, 30, 90, 150, 270])

all_eps = np.linspace(0, 365.25, 200)
arc_eps = np.linspace(0, 75, 75)

fig = plt.figure(figsize=(15,4))
(continues on next page)

102 Chapter 2. User Guide:

orbitize Documentation

(continued from previous page)

for i, pan in enumerate(pans):
ax = fig.add_subplot(1, 5, i+1)

all_ras, all_decs, _ = calc_orbit(all_eps, sma, ecc, inc, aop, pan, tau, plx, mtot,␣
→˓tau_ref_epoch=0)

ax.plot(all_ras, all_decs, 'k--', alpha=0.5)

arc_ras, arc_decs, _ = calc_orbit(arc_eps, sma, ecc, inc, aop, pan, tau, plx, mtot,␣
→˓tau_ref_epoch=0)

ax.plot(arc_ras, arc_decs, 'b-', linewidth=2)
ax.plot(arc_ras[-1], arc_decs[-1], 'bo', markersize=7)

ax.set_title(r"Ω = {0:d} deg".format(int(np.degrees(pan))))
ax.set_aspect("equal")
ax.set_xlim([1.1, -1.1])
ax.set_ylim([-1.1, 1.1])
ax.set_xlabel("RA")
ax.set_ylabel("Dec")

fig.tight_layout()

2.4 Contributing to the Code

orbitize is under active development, and we’ve still got a lot to do! To get involved, check out our contributor
guidelines, look over our issues list, and/or reach out to Sarah. We’d love to have you on our team!

Members of our team have collectively drafted this community agreement stating both our values and ground rules. In
joining our team, we ask that you read and (optionally) suggest changes to this document.

2.5 Detailed API Documentation

2.5.1 Basis

class orbitize.basis.Basis(stellar_or_system_mass, mass_err, plx, plx_err, num_secondary_bodies,
fit_secondary_mass, angle_upperlim=6.283185307179586,
hipparcos_IAD=None, rv=False, rv_instruments=None)

Abstract base class for different basis sets. All new basis objects should inherit from this class. This class is
meant to control how priors are assigned to various basis sets and how conversions are made from the basis sets
to the standard keplarian set.

Author: Tirth, 2021

2.4. Contributing to the Code 103

https://github.com/sblunt/orbitize/blob/master/contributor_guidelines.md
https://github.com/sblunt/orbitize/blob/master/contributor_guidelines.md
https://github.com/sblunt/orbitize/issues
https://sites.google.com/g.harvard.edu/sarah/contact?authuser=0
https://docs.google.com/document/d/1ZzjkoB20vVTlg2wbNpS7sRjmcSrECdh8kQ11-waZQhw/edit

orbitize Documentation

set_default_mass_priors(priors_arr, labels_arr)
Adds the necessary priors for the stellar and/or companion masses.

Parameters

• priors_arr (list of orbitize.priors.Prior objects) – holds the prior objects
for each parameter to be fitted (updated here)

• labels_arr (list of strings) – holds the name of all the parameters to be fitted (up-
dated here)

set_hip_iad_priors(priors_arr, labels_arr)
Adds the necessary priors relevant to the hipparcos data to ‘priors_arr’ and updates ‘labels_arr’ with the
priors’ corresponding labels.

Parameters

• priors_arr (list of orbitize.priors.Prior objects) – holds the prior objects
for each parameter to be fitted (updated here)

• labels_arr (list of strings) – holds the name of all the parameters to be fitted (up-
dated here)

set_rv_priors(priors_arr, labels_arr)
Adds the necessary priors if radial velocity data is supplied to ‘priors_arr’ and updates ‘labels_arr’ with the
priors’ corresponding labels. This function assumes that ‘rv’ data has been supplied and a secondary mass
is being fitted for.

Parameters

• priors_arr (list of orbitize.priors.Prior objects) – holds the prior objects
for each parameter to be fitted (updated here)

• labels_arr (list of strings) – holds the name of all the parameters to be fitted (up-
dated here)

verify_params()

Displays warnings about the ‘fit_secondary_mass’ and ‘rv’ parameters for all basis sets. Can be overriden
by any basis class depending on the necessary parameters that need to be checked.

class orbitize.basis.Period(stellar_or_system_mass, mass_err, plx, plx_err, num_secondary_bodies,
fit_secondary_mass, angle_upperlim=6.283185307179586,
hipparcos_IAD=None, rv=False, rv_instruments=None)

Modification of the standard basis, swapping our sma for period: (per, ecc, inc, aop, pan, tau).

Parameters

• stellar_or_system_mass (float) – mass of the primary star (if fitting for dynamical
masses of both components) or total system mass (if fitting using relative astrometry only)
[M_sol]

• mass_err (float) – uncertainty on ‘stellar_or_system_mass’, in M_sol

• plx (float) – mean parallax of the system, in mas

• plx_err (float) – uncertainty on ‘plx’, in mas

• num_secondary_bodies (int) – number of secondary bodies in the system, should be at
least 1

• fit_secondary_mass (bool) – if True, include the dynamical mass of orbitting body as
fitted parameter, if False, ‘stellar_or_system_mass’ is taken to be total mass

104 Chapter 2. User Guide:

orbitize Documentation

• angle_upperlim (float) – either pi or 2pi, to restrict the prior range for ‘pan’ parameter
(default: 2pi)

• hipparcos_IAD (orbitize.HipparcosLogProb object) – if not ‘None’, then add rele-
vant priors to this data (default: None)

• rv (bool) – if True, then there is radial velocity data and assign radial velocity priors, if False,
then there is no radial velocity data and radial velocity priors are not assigned (default: False)

• rv_instruments (np.array) – array of unique rv instruments from the originally supplied
data (default: None)

construct_priors()

Generates the parameter label array and initializes the corresponding priors for each parameter that’s to be
sampled. For the standard basis, the parameters common to each companion are: per, ecc, inc, aop, pan,
tau. Parallax, hipparcos (optional), rv (optional), and mass priors are added at the end.

Returns

list: list of strings (labels) that indicate the names of each parameter to sample

list: list of orbitize.priors.Prior objects that indicate the prior distribution of each label

Return type
tuple

to_period_basis(param_arr)
Convert parameter array from standard basis to period basis by swapping out the semi-major axis parameter
to period for each companion. This function is used primarily for testing purposes.

Parameters
param_arr (np.array of float) – RxM array of fitting parameters in the standard basis,
where R is the number of parameters being fit, and M is the number of orbits. If M=1 (for
MCMC), this can be a 1D array.

Returns

modifies ‘param_arr’ to contain the period for each companion
in each orbit rather than semi-major axis. Shape of ‘param_arr’ remains the same.

Return type
np.array of float

to_standard_basis(param_arr)
Convert parameter array from period basis to standard basis by swapping out the period parameter to semi-
major axis for each companion.

Parameters
param_arr (np.array of float) – RxM array of fitting parameters in the period basis,
where R is the number of parameters being fit, and M is the number of orbits. If M=1 (for
MCMC), this can be a 1D array.

Returns

modifies ‘param_arr’ to contain the semi-major axis for each companion
in each orbit rather than period. Shape of ‘param_arr’ remains the same.

Return type
np.array of float

class orbitize.basis.SemiAmp(stellar_or_system_mass, mass_err, plx, plx_err, num_secondary_bodies,
fit_secondary_mass, angle_upperlim=6.283185307179586,
hipparcos_IAD=None, rv=False, rv_instruments=None)

2.5. Detailed API Documentation 105

orbitize Documentation

Modification of the standard basis, swapping our sma for period and additionally sampling in the stellar radial
velocity semi-amplitude: (per, ecc, inc, aop, pan, tau, K).

Note: Ideally, ‘fit_secondary_mass’ is true and rv data is supplied.

Parameters

• stellar_or_system_mass (float) – mass of the primary star (if fitting for dynamical
masses of both components) or total system mass (if fitting using relative astrometry only)
[M_sol]

• mass_err (float) – uncertainty on ‘stellar_or_system_mass’, in M_sol

• plx (float) – mean parallax of the system, in mas

• plx_err (float) – uncertainty on ‘plx’, in mas

• num_secondary_bodies (int) – number of secondary bodies in the system, should be at
least 1

• fit_secondary_mass (bool) – if True, include the dynamical mass of orbitting body as
fitted parameter, if False, ‘stellar_or_system_mass’ is taken to be total mass

• angle_upperlim (float) – either pi or 2pi, to restrict the prior range for ‘pan’ parameter
(default: 2*pi)

• hipparcos_IAD (orbitize.HipparcosLogProb object) – if not ‘None’, then add rele-
vant priors to this data (default: None)

• rv (bool) – if True, then there is radial velocity data and assign radial velocity priors, if False,
then there is no radial velocity data and radial velocity priors are not assigned (default: False)

• rv_instruments (np.array) – array of unique rv instruments from the originally supplied
data (default: None)

compute_companion_mass(period, ecc, inc, semi_amp, m0)
Computes a single companion’s mass given period, eccentricity, inclination, stellar rv semi-amplitude, and
stellar mass. Uses scipy.fsolve to compute the masses numerically.

Parameters

• period (np.array of float) – the period values for each orbit for a single companion
(can be float)

• ecc (np.array of float) – the eccentricity values for each orbit for a single companion
(can be float)

• inc (np.array of float) – the inclination values for each orbit for a single companion
(can be float)

• semi_amp (np.array of float) – the stellar rv-semi amp values for each orbit (can be
float)

• m0 (np.array of float) – the stellar mass for each orbit (can be float)

Returns
the companion mass values for each orbit (can also just be a single float)

Return type
np.array of float

106 Chapter 2. User Guide:

orbitize Documentation

compute_companion_sma(period, m0, m_n)
Computes a single companion’s semi-major axis using Kepler’s Third Law for each orbit.

Parameters

• period (np.array of float) – the period values for each orbit for a single companion
(can be float)

• m0 (np.array of float) – the stellar mass for each orbit (can be float)

• m_n (np.array of float) – the companion mass for each orbit (can be float)

Returns
the semi-major axis values for each orbit

Return type
np.array of float

construct_priors()

Generates the parameter label array and initializes the corresponding priors for each parameter that’s to be
sampled. For the semi-amp basis, the parameters common to each companion are: per, ecc, inc, aop, pan,
tau, K (stellar rv semi-amplitude). Parallax, hipparcos (optional), rv (optional), and mass priors are added
at the end.

The mass parameter will always be m0.

Returns

list: list of strings (labels) that indicate the names of each parameter to sample

list: list of orbitize.priors.Prior objects that indicate the prior distribution of each label

Return type
tuple

func(x, lhs, m0)
Define function for scipy.fsolve to use when computing companion mass.

Parameters

• x (float) – the companion mass to be calculated (Msol)

• lhs (float) – the left hand side of the rv semi-amplitude equation (Msol^(1/3))

• m0 (float) – the stellar mass (Msol)

Returns

the difference between the rhs and lhs of the rv semi-amplitude equation, ‘x’ is a
good companion mass when this difference is very close to zero

Return type
float

to_semi_amp_basis(param_arr)
Convert parameter array from standard basis to semi-amp basis by swapping out the semi-major axis pa-
rameter to period for each companion and computing the stellar rv semi-amplitudes for each companion.

Parameters
param_arr (np.array of float) – RxM array of fitting parameters in the period basis,
where R is the number of parameters being fit, and M is the number of orbits. If M=1 (for
MCMC), this can be a 1D array.

Returns

2.5. Detailed API Documentation 107

orbitize Documentation

modifies ‘param_arr’ to contain the semi-major axis for each companion
in each orbit rather than period, appends stellar rv semi-amplitude parameters, and removes
companion masses

Return type
np.array of float

to_standard_basis(param_arr)
Convert parameter array from semi-amp basis to standard basis by swapping out the period parameter to
semi-major axis for each companion and computing the masses of each companion.

Parameters
param_arr (np.array of float) – RxM array of fitting parameters in the period basis,
where R is the number of parameters being fit, and M is the number of orbits. If M=1 (for
MCMC), this can be a 1D array.

Returns

modifies ‘param_arr’ to contain the semi-major axis for each companion
in each orbit rather than period, removes stellar rv semi-amplitude parameters for each
companion, and appends the companion masses to ‘param_arr’

Return type
np.array of float

verify_params()

Additionally warns that this basis will sample stellar mass rather than sample mass regardless of whether
‘fit_secondary_mass’ is True or not.

class orbitize.basis.Standard(stellar_or_system_mass, mass_err, plx, plx_err, num_secondary_bodies,
fit_secondary_mass, angle_upperlim=6.283185307179586,
hipparcos_IAD=None, rv=False, rv_instruments=None)

Standard basis set based upon the 6 standard Keplarian elements: (sma, ecc, inc, aop, pan, tau).

Parameters

• stellar_or_system_mass (float) – mass of the primary star (if fitting for dynamical
masses of both components) or total system mass (if fitting using relative astrometry only)
[M_sol]

• mass_err (float) – uncertainty on ‘stellar_or_system_mass’, in M_sol

• plx (float) – mean parallax of the system, in mas

• plx_err (float) – uncertainty on ‘plx’, in mas

• num_secondary_bodies (int) – number of secondary bodies in the system, should be at
least 1

• fit_secondary_mass (bool) – if True, include the dynamical mass of orbitting body as
fitted parameter, if False, ‘stellar_or_system_mass’ is taken to be total mass

• angle_upperlim (float) – either pi or 2pi, to restrict the prior range for ‘pan’ parameter
(default: 2pi)

• hipparcos_IAD (orbitize.HipparcosLogProb object) – if not ‘None’, then add rele-
vant priors to this data (default: None)

• rv (bool) – if True, then there is radial velocity data and assign radial velocity priors, if False,
then there is no radial velocity data and radial velocity priors are not assigned (default: False)

• rv_instruments (np.array) – array of unique rv instruments from the originally supplied
data (default: None)

108 Chapter 2. User Guide:

orbitize Documentation

construct_priors()

Generates the parameter label array and initializes the corresponding priors for each parameter that’s to be
sampled. For the standard basis, the parameters common to each companion are: sma, ecc, inc, aop, pan,
tau. Parallax, hipparcos (optional), rv (optional), and mass priors are added at the end.

Returns

list: list of strings (labels) that indicate the names of each parameter to sample

list: list of orbitize.priors.Prior objects that indicate the prior distribution of each label

Return type
tuple

to_standard_basis(param_arr)
For standard basis, no conversion needs to be made.

Parameters
param_arr (np.array of float) – RxM array of fitting parameters in the standard basis,
where R is the number of parameters being fit, and M is the number of orbits. If M=1 (for
MCMC), this can be a 1d array.

Returns
param_arr without any modification

Return type
np.array of float

class orbitize.basis.XYZ(stellar_or_system_mass, mass_err, plx, plx_err, num_secondary_bodies,
fit_secondary_mass, data_table, best_epoch_idx, epochs,
angle_upperlim=6.283185307179586, hipparcos_IAD=None, rv=False,
rv_instruments=None)

Defines an orbit using the companion’s position and velocity components in XYZ space (x, y, z, xdot, ydot,
zdot). The conversion algorithms used for this basis are defined in the following paper: http://www.dept.aoe.vt.
edu/~lutze/AOE4134/9OrbitInSpace.pdf

Note: Does not have support with sep,pa data yet.

Note: Does not work for all multi-body data.

Parameters

• stellar_or_system_mass (float) – mass of the primary star (if fitting for dynamical
masses of both components) or total system mass (if fitting using relative astrometry only)
[M_sol]

• mass_err (float) – uncertainty on ‘stellar_or_system_mass’, in M_sol

• plx (float) – mean parallax of the system, in mas

• plx_err (float) – uncertainty on ‘plx’, in mas

• num_secondary_bodies (int) – number of secondary bodies in the system, should be at
least 1

• fit_secondary_mass (bool) – if True, include the dynamical mass of orbitting body as
fitted parameter, if False, ‘stellar_or_system_mass’ is taken to be total mass

2.5. Detailed API Documentation 109

http://www.dept.aoe.vt.edu/~lutze/AOE4134/9OrbitInSpace.pdf
http://www.dept.aoe.vt.edu/~lutze/AOE4134/9OrbitInSpace.pdf

orbitize Documentation

• input_table (astropy.table.Table) – output from ‘orbitize.read_input.read_file()’

• best_epoch_idx (list) – indices of the epochs corresponding to the smallest uncertainties

• epochs (list) – all of the astrometric epochs from ‘input_table’

• angle_upperlim (float) – either pi or 2pi, to restrict the prior range for ‘pan’ parameter
(default: 2*pi)

• hipparcos_IAD (orbitize.HipparcosLogProb object) – if not ‘None’, then add rele-
vant priors to this data (default: None)

• rv (bool) – if True, then there is radial velocity data and assign radial velocity priors, if False,
then there is no radial velocity data and radial velocity priors are not assigned (default: False)

• rv_instruments (np.array) – array of unique rv instruments from the originally supplied
data (default: None)

Author: Rodrigo

construct_priors()

Generates the parameter label array and initializes the corresponding priors for each parameter that’s to
be sampled. For the xyz basis, the parameters common to each companion are: x, y, z, xdot, ydot, zdot.
Parallax, hipparcos (optional), rv (optional), and mass priors are added at the end.

The xyz basis describes the position and velocity vectors with reference to the local coordinate system (the
origin of the system is star).

Returns

list: list of strings (labels) that indicate the names of each parameter to sample

list: list of orbitize.priors.Prior objects that indicate the prior distribution of each label

Return type
tuple

standard_to_xyz(epoch, elems, tau_ref_epoch=58849, tolerance=1e-09, max_iter=100)
Converts array of orbital elements from the regular base of Keplerian orbits to positions and velocities in
xyz Uses code from orbitize.kepler

Parameters

• epoch (float) – Date in MJD of observation to calculate time of periastron passage (tau).

• elems (np.array of floats) – Orbital elements (sma, ecc, inc, aop, pan, tau, plx,
mtot). If more than 1 set of parameters is passed, the first dimension must be the num-
ber of orbital parameter sets, and the second the orbital elements.

Returns

Orbital elements in xyz (x-coordinate [au], y-coordinate [au], z-coordinate [au], velocity in x
[km/s], velocity in y [km/s], velocity in z [km/s], parallax [mas], total mass of the two-body
orbit

(M_* + M_planet) [Solar masses])

Return type
np.array

to_standard_basis(param_arr)
Makes a call to ‘xyz_to_standard’ to convert each companion’s xyz parameters to the standard parameters
an returns the updated array for conversion.

110 Chapter 2. User Guide:

orbitize Documentation

Parameters
param_arr (np.array of float) – RxM array of fitting parameters in the period basis,
where R is the number of parameters being fit, and M is the number of orbits. If M=1 (for
MCMC), this can be a 1D array.

Returns
Orbital elements in the standard basis for all companions.

Return type
np.array

to_xyz_basis(param_arr)
Makes a call to ‘standard_to_xyz’ to convert each companion’s standard keplerian parameters to the xyz
parameters an returns the updated array for conversion.

Parameters
param_arr (np.array of float) – RxM array of fitting parameters in the period basis,
where R is the number of parameters being fit, and M is the number of orbits. If M=1 (for
MCMC), this can be a 1D array.

Returns
Orbital elements in the xyz for all companions.

Return type
np.array

verify_params()

For now, additionally throws exceptions if data is supplied in sep/pa or if the best epoch for each body is
one of the last two (which would inevtably mess up how the priors are imposed).

xyz_to_standard(epoch, elems, tau_ref_epoch=58849)
Converts array of orbital elements in terms of position and velocity in xyz to the standard basis.

Parameters

• epoch (float) – Date in MJD of observation to calculate time of periastron passage (tau).

• elems (np.array of floats) – Orbital elements in xyz basis (x-coordinate [au], y-
coordinate [au], z-coordinate [au], velocity in x [km/s], velocity in y [km/s], velocity in z
[km/s], parallax [mas], total mass of the two-body orbit (M_* + M_planet) [Solar masses]).
If more than 1 set of parameters is passed, the first dimension must be the number of orbital
parameter sets, and the second the orbital elements.

Returns

Orbital elements in the standard basis
(sma, ecc, inc, aop, pan, tau, plx, mtot)

Return type
np.array

orbitize.basis.switch_tau_epoch(old_tau, old_epoch, new_epoch, period)
Convert tau to another tau that uses a different referench epoch

Parameters

• old_tau (float or np.array) – old tau to convert

• old_epoch (float or np.array) – old reference epoch (days, typically MJD)

• new_epoch (float or np.array) – new reference epoch (days, same system as
old_epoch)

2.5. Detailed API Documentation 111

orbitize Documentation

• period (float or np.array) – orbital period (years)

Returns
new taus

Return type
float or np.array

orbitize.basis.tau_to_manom(date, sma, mtot, tau, tau_ref_epoch)
Gets the mean anomlay. Wrapper for kepler.tau_to_manom, kept here for backwards compatibility.

Parameters

• date (float or np.array) – MJD

• sma (float) – semi major axis (AU)

• mtot (float) – total mass (M_sun)

• tau (float) – epoch of periastron, in units of the orbital period

• tau_ref_epoch (float) – reference epoch for tau

Returns
mean anomaly on that date [0, 2pi)

Return type
float or np.array

orbitize.basis.tau_to_tp(tau, ref_epoch, period, after_date=None)
Convert tau (epoch of periastron in fractional orbital period after ref epoch) to t_p (date in days, usually MJD,
but works with whatever system ref_epoch is given in)

Parameters

• tau (float or np.array) – value of tau to convert

• ref_epoch (float or np.array) – date (in days, typically MJD) that tau is defined rel-
ative to

• period (float or np.array) – period (in years) that tau is noralized with

• after_date (float or np.array) – tp will be the first periastron after this date. If None,
use ref_epoch.

Returns
corresponding t_p of the taus

Return type
float or np.array

orbitize.basis.tp_to_tau(tp, ref_epoch, period)
Convert t_p to tau

Parameters

• tp (float or np.array) – value to t_p to convert (days, typically MJD)

• ref_epoch (float or np.array) – reference epoch (in days) that tau is defined from.
Same system as tp (e.g., MJD)

• period (float or np.array) – period (in years) that tau is defined by

Returns
corresponding taus

112 Chapter 2. User Guide:

orbitize Documentation

Return type
float or np.array

2.5.2 Driver

class orbitize.driver.Driver(input_data, sampler_str, num_secondary_bodies, stellar_or_system_mass, plx,
mass_err=0, plx_err=0, lnlike='chi2_lnlike', chi2_type='standard',
system_kwargs=None, mcmc_kwargs=None)

Runs through orbitize methods in a standardized way.

Parameters

• input_data – Either a relative path to data file or astropy.table.Table object in the orbitize
format. See orbitize.read_input

• sampler_str (str) – algorithm to use for orbit computation. “MCMC” for Markov Chain
Monte Carlo, “OFTI” for Orbits for the Impatient

• num_secondary_bodies (int) – number of secondary bodies in the system. Should be at
least 1.

• stellar_or_system_mass (float) – mass of the primary star (if fitting for dynamical
masses of both components) or total system mass (if fitting using relative astrometry only)
[M_sol]

• plx (float) – mean parallax of the system [mas]

• mass_err (float, optional) – uncertainty on stellar_or_system_mass [M_sol]

• plx_err (float, optional) – uncertainty on plx [mas]

• lnlike (str, optional) – name of function in orbitize.lnlike that will be used to
compute likelihood. (default=”chi2_lnlike”)

• chi2_type (str, optional) – either “standard”, or “log”

• system_kwargs (dict, optional) – restrict_angle_ranges, tau_ref_epoch,
fit_secondary_mass, hipparcos_IAD, gaia, use_rebound, fitting_basis for
orbitize.system.System.

• mcmc_kwargs (dict, optional) – num_temps, num_walkers, and num_threads
kwargs for orbitize.sampler.MCMC

Written: Sarah Blunt, 2018

2.5.3 Gaia API Module

class orbitize.gaia.GaiaLogProb(gaia_num, hiplogprob, dr='dr2', query=True, gaia_data=None)
Class to compute the log probability of an orbit with respect to a single astrometric position point from Gaia.
Uses astroquery to look up Gaia astrometric data, and computes log-likelihood. To be used in conjunction with
orbitize.hipparcos.HipLogProb; see documentation for that object for more detail.

Follows Nielsen+ 2020 (studying the orbit of beta Pic b). Note that this class currently only fits for the position
of the star in the Gaia epoch, not the star’s proper motion.

Note: In orbitize, it is possible to perform a fit to just the Hipparcos IAD, but not to just the Gaia astrometric
data.

2.5. Detailed API Documentation 113

orbitize Documentation

Parameters

• gaia_num (int) – the Gaia source ID of the object you’re fitting. Note that the dr2 and edr3
source IDs are not necessarily the same.

• hiplogprob (orbitize.hipparcos.HipLogProb) – object containing all info relevant to
Hipparcos IAD fitting

• dr (str) – either ‘dr2’ or ‘edr3’

• query (bool) – if True, queries the Gaia database for astrometry of the target (requires an
internet connection). If False, uses user-input astrometric values (runs without internet).

• gaia_data (dict) – see query keyword above. If query set to False, then user must supply
a dictionary of Gaia astometry in the following form:

gaia_data = {
‘ra’: 139.4 # RA in degrees ‘dec’: 139.4 # Dec in degrees ‘ra_error’: 0.004 # RA
error in mas ‘dec_error’: 0.004 # Dec error in mas

}

Written: Sarah Blunt, 2021

compute_lnlike(raoff_model, deoff_model, samples, param_idx)
Computes the log likelihood of an orbit model with respect to a single Gaia astrometric point. This is added
to the likelihoods calculated with respect to other data types in sampler._logl().

Parameters

• raoff_model (np.array of float) – 2xM primary RA offsets from the barycenter
incurred from orbital motion of companions (i.e. not from parallactic motion), where M
is the number of orbits being tested, and raoff_model[0,:] are position predictions at the
Hipparcos epoch, and raoff_model[1,:] are position predictions at the Gaia epoch

• deoff_model (np.array of float) – 2xM primary decl offsets from the barycenter
incurred from orbital motion of companions (i.e. not from parallactic motion), where M
is the number of orbits being tested, and deoff_model[0,:] are position predictions at the
Hipparcos epoch, and deoff_model[1,:] are position predictions at the Gaia epoch

• samples (np.array of float) – R-dimensional array of fitting parameters, where R is
the number of parameters being fit. Must be in the same order documented in System.

• param_idx – a dictionary matching fitting parameter labels to their indices in an array of
fitting parameters (generally set to System.basis.param_idx).

Returns

array of length M, where M is the number of input
orbits, representing the log likelihood of each orbit with respect to the Gaia position mea-
surement.

Return type
np.array of float

114 Chapter 2. User Guide:

orbitize Documentation

2.5.4 Hipparcos API Module

class orbitize.hipparcos.HipparcosLogProb(path_to_iad_file, hip_num, num_secondary_bodies,
alphadec0_epoch=1991.25, renormalize_errors=False)

Class to compute the log probability of an orbit with respect to the Hipparcos Intermediate Astrometric Data
(IAD). If using a DVD file, queries Vizier for all metadata relevant to the IAD, and reads in the IAD themselves
from a specified location. Follows Nielsen+ 2020 (studying the orbit of beta Pic b).

Fitting the Hipparcos IAD requires fitting for the following five parameters. They are added to the vector of
fitting parameters in system.py, but are described here for completeness. See Nielsen+ 2020 for more detail.

• alpha0: RA offset from the reported Hipparcos position at a particular
epoch (usually 1991.25) [mas]

• delta0: Dec offset from the reported Hipparcos position at a particular
epoch (usually 1991.25) [mas]

• pm_ra: RA proper motion [mas/yr]

• pm_dec: Dec proper motion [mas/yr]

• plx: parallax [mas]

Note: In orbitize, it is possible to perform a fit to just the Hipparcos IAD, but not to just the Gaia astrometric
data.

Parameters

• path_to_iad_file (str) – location of IAD file to be used in your fit. See the Hipparcos
tutorial for a walkthrough of how to download these files.

• hip_num (str) – Hipparcos ID of star. Available on Simbad. Should have zeros in the prefix
if number is <100,000. (i.e. 27321 should be passed in as ‘027321’).

• num_secondary_bodies (int) – number of companions in the system

• alphadec0_epoch (float) – epoch (in decimal year) that the fitting parameters alpha0 and
delta0 are defined relative to (see above).

• renormalize_errors (bool) – if True, normalize the scan errors to get chisq_red = 1,
following Nielsen+ 2020 (eq 10). In general, this should be False, but it’s helpful for testing.
Check out orbitize.hipparcos.nielsen_iad_refitting_test() for an example using this renormal-
ization.

Written: Sarah Blunt & Rob de Rosa, 2021

compute_lnlike(raoff_model, deoff_model, samples, param_idx)
Computes the log likelihood of an orbit model with respect to the Hipparcos IAD. This is added to the
likelihoods calculated with respect to other data types in sampler._logl().

Parameters

• raoff_model (np.array of float) – M-dimensional array of primary RA offsets from
the barycenter incurred from orbital motion of companions (i.e. not from parallactic mo-
tion), where M is the number of epochs of IAD scan data.

• deoff_model (np.array of float) – M-dimensional array of primary RA offsets from
the barycenter incurred from orbital motion of companions (i.e. not from parallactic mo-
tion), where M is the number of epochs of IAD scan data.

2.5. Detailed API Documentation 115

orbitize Documentation

• samples (np.array of float) – R-dimensional array of fitting parameters, where R is
the number of parameters being fit. Must be in the same order documented in System.

• param_idx – a dictionary matching fitting parameter labels to their indices in an array of
fitting parameters (generally set to System.basis.param_idx).

Returns

array of length M, where M is the number of input
orbits, representing the log likelihood of each orbit with respect to the Hipparcos IAD.

Return type
np.array of float

orbitize.hipparcos.nielsen_iad_refitting_test(iad_file, hip_num='027321',
saveplot='bPic_IADrefit.png', burn_steps=100,
mcmc_steps=5000)

Reproduce the IAD refitting test from Nielsen+ 2020 (end of Section 3.1). The default MCMC parameters are
what you’d want to run before using the IAD for a new system. This fit uses 100 walkers.

Parameters

• iad_loc (str) – path to the IAD file.

• hip_num (str) – Hipparcos ID of star. Available on Simbad. Should have zeros in the prefix
if number is <100,000. (i.e. 27321 should be passed in as ‘027321’).

• saveplot (str) – what to save the summary plot as. If None, don’t make a plot

• burn_steps (int) – number of MCMC burn-in steps to run.

• mcmc_steps (int) – number of MCMC production steps to run.

Returns

numpy.array of float: n_steps x 5 array of posterior samples

orbitize.hipparcos.HipparcosLogProb: the object storing relevant
metadata for the performed Hipparcos IAD fit

Return type
tuple

2.5.5 Kepler Solver

This module solves for the orbit of the planet given Keplerian parameters.

orbitize.kepler.calc_orbit(epochs, sma, ecc, inc, aop, pan, tau, plx, mtot, mass_for_Kamp=None,
tau_ref_epoch=58849, tolerance=1e-09, max_iter=100, use_c=True,
use_gpu=False)

Returns the separation and radial velocity of the body given array of orbital parameters (size n_orbs) at given
epochs (array of size n_dates)

Based on orbit solvers from James Graham and Rob De Rosa. Adapted by Jason Wang and Henry Ngo.

Parameters

• epochs (np.array) – MJD times for which we want the positions of the planet

• sma (np.array) – semi-major axis of orbit [au]

• ecc (np.array) – eccentricity of the orbit [0,1]

116 Chapter 2. User Guide:

orbitize Documentation

• inc (np.array) – inclination [radians]

• aop (np.array) – argument of periastron [radians]

• pan (np.array) – longitude of the ascending node [radians]

• tau (np.array) – epoch of periastron passage in fraction of orbital period past MJD=0 [0,1]

• plx (np.array) – parallax [mas]

• mtot (np.array) – total mass of the two-body orbit (M_* + M_planet) [Solar masses]

• mass_for_Kamp (np.array, optional) – mass of the body that causes the RV signal. For
example, if you want to return the stellar RV, this is the planet mass. If you want to return the
planetary RV, this is the stellar mass. [Solar masses]. For planet mass ~ 0, mass_for_Kamp
~ M_tot, and function returns planetary RV (default).

• tau_ref_epoch (float, optional) – reference date that tau is defined with respect to
(i.e., tau=0)

• tolerance (float, optional) – absolute tolerance of iterative computation. Defaults to
1e-9.

• max_iter (int, optional) – maximum number of iterations before switching. Defaults
to 100.

• use_c (bool, optional) – Use the C solver if configured. Defaults to True

• use_gpu (bool, optional) – Use the GPU solver if configured. Defaults to False

Returns

raoff (np.array): array-like (n_dates x n_orbs) of RA offsets between the bodies (origin is at the
other body) [mas]

deoff (np.array): array-like (n_dates x n_orbs) of Dec offsets between the bodies [mas]

vz (np.array): array-like (n_dates x n_orbs) of radial velocity of one of the bodies
(see mass_for_Kamp description) [km/s]

Return type
3-tuple

Written: Jason Wang, Henry Ngo, 2018

orbitize.kepler.tau_to_manom(date, sma, mtot, tau, tau_ref_epoch)
Gets the mean anomlay

Parameters

• date (float or np.array) – MJD

• sma (float) – semi major axis (AU)

• mtot (float) – total mass (M_sun)

• tau (float) – epoch of periastron, in units of the orbital period

• tau_ref_epoch (float) – reference epoch for tau

Returns
mean anomaly on that date [0, 2pi)

Return type
float or np.array

2.5. Detailed API Documentation 117

orbitize Documentation

2.5.6 Log(Likelihood)

orbitize.lnlike.chi2_lnlike(data, errors, corrs, model, jitter, seppa_indices, chi2_type='standard')
Compute Log of the chi2 Likelihood

Args:

data (np.array): Nobsx2 array of data, where data[:,0] = sep/RA/RV
for every epoch, and data[:,1] = corresponding pa/DEC/np.nan.

errors (np.array): Nobsx2 array of errors for each data point. Same
format as data.

corrs (np.array): Nobs array of Pearson correlation coeffs
between the two quantities. If there is none, can be None.

model (np.array): Nobsx2xM array of model predictions, where M is the number of orbits being
compared against the data. If M is 1, model can be 2 dimensional. jitter (np.array): Nobsx2xM
array of jitter values to add to errors.

Elements of array should be 0 for for all data other than stellar rvs.

seppa_indices (list): list of epoch numbers whose observations are
given in sep/PA. This list is located in System.seppa.

chi2_type (string): the format of chi2 to use is either ‘standard’ or ‘log’

Returns:
np.array: Nobsx2xM array of chi-squared values.

Note: (1) Example: We have 8 epochs of data for a system. OFTI returns an array of 10,000 sets of
orbital parameters. The model input for this function should be an array of dimension 8 x 2 x 10,000.

(2) Chi2_log: redefining chi-sqaured in log scale may give a more stable optimization. This
works on separation and position angle data (seppa) not right ascension and declination (radec)
data, but it is possible to convert between the two within Orbitize! using the function ‘or-
bitize.system’radec2seppa’ (see docuemntation). This implementation defines sep chi-squared
in log scale, and defines pa chi-sq using complex phase representation. log sep chisq = (log sep
- log sep_true)^2 / (sep_sigma / sep_true)^2 pa chisq = 2 * (1 - cos(pa-pa_true))/pa_sigma^2

i

orbitize.lnlike.chi2_norm_term(errors, corrs)
Return only the normalization term of the Gaussian likelihood:

−𝑙𝑜𝑔(
√︀

(2𝜋 * 𝑒𝑟𝑟𝑜𝑟2))

or

−0.5 * (𝑙𝑜𝑔(𝑑𝑒𝑡(𝐶)) +𝑁 * 𝑙𝑜𝑔(2𝜋))

Parameters

• errors (np.array) – Nobsx2 array of errors for each data point. Same format as data.

• corrs (np.array) – Nobs array of Pearson correlation coeffs between the two quantities.
If there is none, can be None.

118 Chapter 2. User Guide:

orbitize Documentation

Returns
sum of the normalization terms

Return type
float

2.5.7 N-body Backend

orbitize.nbody.calc_orbit(epochs, sma, ecc, inc, aop, pan, tau, plx, mtot, tau_ref_epoch=58849, m_pl=None,
output_star=False)

Solves for position for a set of input orbital elements using rebound.

Parameters

• epochs (np.array) – MJD times for which we want the positions of the planet

• sma (np.array) – semi-major axis of orbit [au]

• ecc (np.array) – eccentricity of the orbit [0,1]

• inc (np.array) – inclination [radians]

• aop (np.array) – argument of periastron [radians]

• pan (np.array) – longitude of the ascending node [radians]

• tau (np.array) – epoch of periastron passage in fraction of orbital period past MJD=0 [0,1]

• plx (np.array) – parallax [mas]

• mtot (np.array) – total mass of the two-body orbit (M_* + M_planet) [Solar masses]

• tau_ref_epoch (float, optional) – reference date that tau is defined with respect to

• m_pl (np.array, optional) – mass of the planets[units]

• output_star (bool) – if True, also return the position of the star relative to the barycenter.

Returns

raoff (np.array): array-like (n_dates x n_orbs) of RA offsets between
the bodies (origin is at the other body) [mas]

deoff (np.array): array-like (n_dates x n_orbs) of Dec offsets between
the bodies [mas]

vz (np.array): array-like (n_dates x n_orbs) of radial velocity of
one of the bodies (see mass_for_Kamp description) [km/s]

Return type
3-tuple

Note: return is in format [raoff[planet1, planet2,. . . ,planetn], deoff[planet1, planet2,. . . ,planetn], vz[planet1,
planet2,. . . ,planetn]

2.5. Detailed API Documentation 119

orbitize Documentation

2.5.8 Plotting Methods

orbitize.plot.plot_corner(results, param_list=None, **corner_kwargs)
Make a corner plot of posterior on orbit fit from any sampler

Parameters

• param_list (list of strings) – each entry is a name of a parameter to include. Valid
strings:

sma1: semimajor axis
ecc1: eccentricity
inc1: inclination
aop1: argument of periastron
pan1: position angle of nodes
tau1: epoch of periastron passage, expressed as fraction of orbital␣
→˓period
per1: period
K1: stellar radial velocity semi-amplitude
[repeat for 2, 3, 4, etc if multiple objects]
plx: parallax
pm_ra: RA proper motion
pm_dec: Dec proper motion
alpha0: primary offset from reported Hipparcos RA @ alphadec0_epoch␣
→˓(generally 1991.25)
delta0: primary offset from reported Hipparcos Dec @ alphadec0_epoch␣
→˓(generally 1991.25)
gamma: rv offset
sigma: rv jitter
mi: mass of individual body i, for i = 0, 1, 2, ... (only if fit_
→˓secondary_mass == True)
mtot: total mass (only if fit_secondary_mass == False)

• **corner_kwargs – any remaining keyword args are sent to corner.corner. See here.
Note: default axis labels used unless overwritten by user input.

Returns
corner plot

Return type
matplotlib.pyplot.Figure

Note: Example: Use param_list = ['sma1,ecc1,inc1,sma2,ecc2,inc2'] to only plot posteriors for
semimajor axis, eccentricity and inclination of the first two companions

Written: Henry Ngo, 2018

orbitize.plot.plot_orbits(results, object_to_plot=1, start_mjd=51544.0, num_orbits_to_plot=100,
num_epochs_to_plot=100, square_plot=True, show_colorbar=True,
cmap=<matplotlib.colors.LinearSegmentedColormap object>,
sep_pa_color='lightgrey', sep_pa_end_year=2025.0, cbar_param='Epoch [year]',
mod180=False, rv_time_series=False, plot_astrometry=True,
plot_astrometry_insts=False, plot_errorbars=True, fig=None)

Plots one orbital period for a select number of fitted orbits for a given object, with line segments colored according
to time

120 Chapter 2. User Guide:

https://corner.readthedocs.io/

orbitize Documentation

Parameters

• object_to_plot (int) – which object to plot (default: 1)

• start_mjd (float) – MJD in which to start plotting orbits (default: 51544, the year 2000)

• num_orbits_to_plot (int) – number of orbits to plot (default: 100)

• num_epochs_to_plot (int) – number of points to plot per orbit (default: 100)

• square_plot (Boolean) – Aspect ratio is always equal, but if square_plot is True (default),
then the axes will be square, otherwise, white space padding is used

• show_colorbar (Boolean) – Displays colorbar to the right of the plot [True]

• cmap (matplotlib.cm.ColorMap) – color map to use for making orbit tracks (default:
modified Purples_r)

• sep_pa_color (string) – any valid matplotlib color string, used to set the color of the
orbit tracks in the Sep/PA panels (default: ‘lightgrey’).

• sep_pa_end_year (float) – decimal year specifying when to stop plotting orbit tracks in
the Sep/PA panels (default: 2025.0).

• cbar_param (string) – options are the following: ‘Epoch [year]’, ‘sma1’, ‘ecc1’, ‘inc1’,
‘aop1’, ‘pan1’, ‘tau1’, ‘plx. Number can be switched out. Default is Epoch [year].

• mod180 (Bool) – if True, PA will be plotted in range [180, 540]. Useful for plotting short
arcs with PAs that cross 360 deg during observations (default: False)

• rv_time_series (Boolean) – if fitting for secondary mass using MCMC for rv fitting and
want to display time series, set to True.

• plot_astrometry (Boolean) – set to True by default. Plots the astrometric data.

• plot_astrometry_insts (Boolean) – set to False by default. Plots the astrometric data
by instruments.

• plot_errorbars (Boolean) – set to True by default. Plots error bars of measurements

• fig (matplotlib.pyplot.Figure) – optionally include a predefined Figure object to plot
the orbit on. Most users will not need this keyword.

Returns
the orbit plot if input is valid, None otherwise

Return type
matplotlib.pyplot.Figure

(written): Henry Ngo, Sarah Blunt, 2018 Additions by Malena Rice, 2019

2.5.9 Priors

class orbitize.priors.GaussianPrior(mu, sigma, no_negatives=True)
Gaussian prior.

𝑙𝑜𝑔(𝑝(𝑥|𝜎, 𝜇)) ∝ (𝑥− 𝜇)

𝜎

Parameters

• mu (float) – mean of the distribution

• sigma (float) – standard deviation of the distribution

2.5. Detailed API Documentation 121

orbitize Documentation

• no_negatives (bool) – if True, only positive values will be drawn from this prior, and the
probability of negative values will be 0 (default:True).

(written) Sarah Blunt, 2018

compute_lnprob(element_array)
Compute log(probability) of an array of numbers wrt a Gaussian distibution. Negative numbers return a
probability of -inf.

Parameters
element_array (float or np.array of float) – array of numbers. We want the prob-
ability of drawing each of these from the appopriate Gaussian distribution

Returns
array of log(probability) values, corresponding to the probability of drawing each of the num-
bers in the input element_array.

Return type
numpy array of float

draw_samples(num_samples)
Draw positive samples from a Gaussian distribution. Negative samples will not be returned.

Parameters
num_samples (float) – the number of samples to generate

Returns
samples drawn from the appropriate Gaussian distribution. Array has length num_samples.

Return type
numpy array of float

class orbitize.priors.KDEPrior(gaussian_kde, total_params, bounds=[], log_scale_arr=[])
Gaussian kernel density estimation (KDE) prior. This class is a wrapper for scipy.stats.gaussian_kde.

Parameters

• gaussian_kde (scipy.stats.gaussian_kde) – scipy KDE object containing the KDE
defined by the user

• total_params (float) – number of parameters in the KDE

• bounds (array_like of bool, optional) – bounds for the KDE out of which the prob
returned is -Inf

• bounds – if True for a parameter the parameter is fit to the KDE in log-scale

Written: Jorge LLop-Sayson, Sarah Blunt (2021)

compute_lnprob(element_array)
Compute log(probability) of an array of numbers wrt a the defined KDE. Negative numbers return a prob-
ability of -inf.

Parameters
element_array (float or np.array of float) – array of numbers. We want the prob-
ability of drawing each of these from the KDE.

Returns
array of log(probability) values, corresponding to the probability of drawing each of the num-
bers in the input element_array.

Return type
numpy array of float

122 Chapter 2. User Guide:

orbitize Documentation

draw_samples(num_samples)
Draw positive samples from the KDE. Negative samples will not be returned.

Parameters
num_samples (float) – the number of samples to generate.

Returns
samples drawn from the KDE distribution. Array has length num_samples.

Return type
numpy array of float

increment_param_num()

Increment the index to evaluate the appropriate parameter.

class orbitize.priors.LinearPrior(m, b)
Draw samples from the probability distribution:

𝑝(𝑥) ∝ 𝑚𝑥+ 𝑏

where m is negative, b is positive, and the range is [0,-b/m].

Parameters

• m (float) – slope of line. Must be negative.

• b (float) – y intercept of line. Must be positive.

draw_samples(num_samples)
Draw samples from a descending linear distribution.

Parameters
num_samples (float) – the number of samples to generate

Returns
samples ranging from [0, -b/m) as floats.

Return type
np.array

class orbitize.priors.LogUniformPrior(minval, maxval)
This is the probability distribution 𝑝(𝑥) ∝ 1/𝑥

The __init__ method should take in a “min” and “max” value of the distribution, which correspond to the domain
of the prior. (If this is not implemented, the prior has a singularity at 0 and infinite integrated probability).

Parameters

• minval (float) – the lower bound of this distribution

• maxval (float) – the upper bound of this distribution

compute_lnprob(element_array)
Compute the prior probability of each element given that its drawn from a Log-Uniofrm prior

Parameters
element_array (float or np.array of float) – array of paramters to compute the
prior probability of

Returns
array of prior probabilities

Return type
np.array

2.5. Detailed API Documentation 123

orbitize Documentation

draw_samples(num_samples)
Draw samples from this 1/x distribution.

Parameters
num_samples (float) – the number of samples to generate

Returns
samples ranging from [minval, maxval) as floats.

Return type
np.array

class orbitize.priors.NearestNDInterpPrior(interp_fct, total_params)
Nearest Neighbor interp. This class is a wrapper for scipy.interpolate.NearestNDInterpolator.

Parameters

• interp_fct (scipy.interpolate.NearestNDInterpolator) – scipy Interpolator ob-
ject containing the NDInterpolator defined by the user

• total_params (float) – number of parameters

Written: Jorge LLop-Sayson (2021)

compute_lnprob(element_array)
Compute log(probability) of an array of numbers wrt a the defined ND interpolator. Negative numbers
return a probability of -inf.

Parameters
element_array (float or np.array of float) – array of numbers. We want the prob-
ability of drawing each of these from the ND interpolator.

Returns
array of log(probability) values, corresponding to the probability of drawing each of the num-
bers in the input element_array.

Return type
numpy array of float

draw_samples(num_samples)
Draw positive samples from the ND interpolator. Negative samples will not be returned.

Parameters
num_samples (float) – the number of samples to generate.

Returns
samples drawn from the ND interpolator distribution. Array has length num_samples.

Return type
numpy array of float

increment_param_num()

Increment the index to evaluate the appropriate parameter.

class orbitize.priors.Prior

Abstract base class for prior objects. All prior objects should inherit from this class.

Written: Sarah Blunt, 2018

class orbitize.priors.SinPrior

This is the probability distribution 𝑝(𝑥) ∝ 𝑠𝑖𝑛(𝑥)

The domain of this prior is [0,pi].

124 Chapter 2. User Guide:

orbitize Documentation

compute_lnprob(element_array)
Compute the prior probability of each element given that its drawn from a sine prior

Parameters
element_array (float or np.array of float) – array of paramters to compute the
prior probability of

Returns
array of prior probabilities

Return type
np.array

draw_samples(num_samples)
Draw samples from a Sine distribution.

Parameters
num_samples (float) – the number of samples to generate

Returns
samples ranging from [0, pi) as floats.

Return type
np.array

class orbitize.priors.UniformPrior(minval, maxval)
This is the probability distribution p(x) propto constant.

Parameters

• minval (float) – the lower bound of the uniform prior

• maxval (float) – the upper bound of the uniform prior

compute_lnprob(element_array)
Compute the prior probability of each element given that its drawn from this uniform prior

Parameters
element_array (float or np.array of float) – array of paramters to compute the
prior probability of

Returns
array of prior probabilities

Return type
np.array

draw_samples(num_samples)
Draw samples from this uniform distribution.

Parameters
num_samples (float) – the number of samples to generate

Returns
samples ranging from [0, pi) as floats.

Return type
np.array

orbitize.priors.all_lnpriors(params, priors)
Calculates log(prior probability) of a set of parameters and a list of priors

Parameters

2.5. Detailed API Documentation 125

orbitize Documentation

• params (np.array) – size of N parameters

• priors (list) – list of N prior objects corresponding to each parameter

Returns
prior probability of this set of parameters

Return type
float

2.5.10 Read Input

Module to read user input from files and create standardized input for orbitize

orbitize.read_input.read_file(filename)
Reads data from any file for use in orbitize readable by astropy.io.ascii.read(), including csv format. See
the astropy docs.

There are two ways to provide input data to orbitize.

The first way is to provide astrometric measurements, shown with the following example.

Example of an orbitize-readable .csv input file:

epoch,object,raoff,raoff_err,decoff,decoff_err,radec_corr,sep,sep_err,pa,pa_err,rv,
→˓rv_err
1234,1,0.010,0.005,0.50,0.05,0.025,,,,,,
1235,1,,,,,,1.0,0.005,89.0,0.1,,
1236,1,,,,,,1.0,0.005,89.3,0.3,,
1237,0,,,,,,,,,,10,0.1

Each row must have epoch (in MJD=JD-2400000.5) and object. Objects are numbered with integers, where
the primary/central object is 0. If you have, for example, one RV measurement of a star and three astrometric
measurements of an orbiting planet, you should put 0 in the object column for the RV point, and 1 in the
columns for the astrometric measurements.

Each line must also have at least one of the following sets of valid measurements:

• RA and DEC offsets [mas], or

• sep [mas] and PA [degrees East of NCP], or

• RV measurement [km/s]

Note: Columns with no data can be omitted (e.g. if only separation and PA are given, the raoff, deoff, and rv
columns can be excluded).

If more than one valid set is given (e.g. RV measurement and astrometric measurement taken at the same epoch),
read_file() will generate a separate output row for each valid set.

For RA/Dec and Sep/PA, you can also specify a correlation term. This is useful when your error ellipse is
tilted with respect to the RA/Dec or Sep/PA. The correlation term is the Pearson correlation coefficient (), which
corresponds to the normalized off diagonal term of the covariance matrix. Let’s define the covariance matrix as
C = [[C_11, C_12], [C_12, C_22]]. Here C_11 = quant1_err^2 and C_22 = quant2_err^2 and C_12 is
the off diagonal term. Then = C_12/(sqrt(C_11)sqrt(C_22)). Essentially it is the covariance normalized
by the variance. As such, -1 1. You can specify either as radec_corr or seppa_corr. By definition, both are
dimensionless, but one will correspond to RA/Dec and the other to Sep/PA. An example of real world data that

126 Chapter 2. User Guide:

http://docs.astropy.org/en/stable/io/ascii/index.html#id1

orbitize Documentation

reports correlations is this GRAVITY paper where table 2 reports the correlation values and figure 4 shows how
the error ellipses are tilted.

Alternatively, you can also supply a data file with the columns already corresponding to the orbitize format (see
the example in description of what this method returns). This may be useful if you are wanting to use the output
of the write_orbitize_input method.

Note: RV measurements of objects that are not the primary should be relative to the barycenter RV. For example,
if the barycenter has a RV of 20 +/- 1 km/s, and you’ve measured an absolute RV for the secondary of 15 +/- 2
km/s, you should input an RV of -5.0 +/- 2.2 for object 1.

Note: When providing data with columns in the orbitize format, there should be no empty cells. As in the
example below, when quant2 is not applicable, the cell should contain nan.

Parameters
filename (str or astropy.table.Table) – Input filename or the actual table object

Returns

Table containing orbitize-readable input for given object. For the example input above:

epoch object quant1 quant1_err quant2 quant2_err quant12_corr quant_
→˓type
float64 int float64 float64 float64 float64 float64 ␣
→˓str5
------- ------ ------- ---------- ------- ---------- ------------ ------
→˓----
1234.0 1 0.01 0.005 0.5 0.05 0.025 ␣
→˓radec
1235.0 1 1.0 0.005 89.0 0.1 nan ␣
→˓seppa
1236.0 1 1.0 0.005 89.3 0.3 nan ␣
→˓seppa
1237.0 0 10.0 0.1 nan nan nan ␣
→˓ rv

where quant_type is one of “radec”, “seppa”, or “rv”.

If quant_type is “radec” or “seppa”, the units of quant are mas and degrees, if quant_type is
“rv”, the units of quant are km/s

Return type
astropy.Table

Written: Henry Ngo, 2018

Updated: Vighnesh Nagpal, Jason Wang (2020-2021)

orbitize.read_input.write_orbitize_input(table, output_filename, file_type='csv')
Writes orbitize-readable input as an ASCII file

Parameters

• table (astropy.Table) – Table containing orbitize-readable input for given object, as gen-
erated by the read functions in this module.

2.5. Detailed API Documentation 127

https://arxiv.org/abs/2101.04187

orbitize Documentation

• output_filename (str) – csv file to write to

• file_type (str) – Any valid write format for astropy.io.ascii. See the astropy docs. De-
faults to csv.

(written) Henry Ngo, 2018

2.5.11 Results

class orbitize.results.Results(system=None, sampler_name=None, post=None, lnlike=None,
version_number=None, curr_pos=None)

A class to store accepted orbital configurations from the sampler

Parameters

• system (orbitize.system.System) – System object used to do the fit.

• sampler_name (string) – name of sampler class that generated these results (default:
None).

• post (np.array of float) – MxN array of orbital parameters (posterior output from
orbit-fitting process), where M is the number of orbits generated, and N is the number of
varying orbital parameters in the fit (default: None).

• lnlike (np.array of float) – M array of log-likelihoods corresponding to the orbits
described in post (default: None).

• version_number (str) – version of orbitize that produced these results.

• data (astropy.table.Table) – output from orbitize.read_input.read_file()

• curr_pos (np.array of float) – for MCMC only. A multi-D array of the current walker
positions that is used for restarting a MCMC sampler.

Written: Henry Ngo, Sarah Blunt, 2018

API Update: Sarah Blunt, 2021

add_samples(orbital_params, lnlikes, curr_pos=None)
Add accepted orbits, their likelihoods, and the orbitize version number to the results

Parameters

• orbital_params (np.array) – add sets of orbital params (could be multiple) to results

• lnlike (np.array) – add corresponding lnlike values to results

• curr_pos (np.array of float) – for MCMC only. A multi-D array of the current
walker positions

Written: Henry Ngo, 2018

API Update: Sarah Blunt, 2021

load_results(filename, append=False)
Populate the results.Results object with data from a datafile

Parameters

• filename (string) – filepath where data is saved

• append (boolean) – if True, then new data is added to existing object. If False (default),
new data overwrites existing object

128 Chapter 2. User Guide:

http://docs.astropy.org/en/stable/io/ascii/index.html#id1

orbitize Documentation

See the save_results() method in this module for information on how the data is structured.

Written: Henry Ngo, 2018

API Update: Sarah Blunt, 2021

plot_corner(param_list=None, **corner_kwargs)
Wrapper for orbitize.plot.plot_corner

plot_orbits(object_to_plot=1, start_mjd=51544.0, num_orbits_to_plot=100, num_epochs_to_plot=100,
square_plot=True, show_colorbar=True,
cmap=<matplotlib.colors.LinearSegmentedColormap object>, sep_pa_color='lightgrey',
sep_pa_end_year=2025.0, cbar_param='Epoch [year]', mod180=False,
rv_time_series=False, plot_astrometry=True, plot_astrometry_insts=False,
plot_errorbars=True, fig=None)

Wrapper for orbitize.plot.plot_orbits

print_results()

Prints median and 68% credible intervals alongside fitting labels

save_results(filename)
Save results.Results object to an hdf5 file

Parameters
filename (string) – filepath to save to

Save attributes from the results.Results object.

sampler_name, tau_ref_epcoh, version_number are attributes of the root group. post, lnlike, and
parameter_labels are datasets that are members of the root group.

Written: Henry Ngo, 2018

API Update: Sarah Blunt, 2021

2.5.12 Sampler

class orbitize.sampler.MCMC(system, num_temps=20, num_walkers=1000, num_threads=1,
chi2_type='standard', like='chi2_lnlike', custom_lnlike=None,
prev_result_filename=None)

MCMC sampler. Supports either parallel tempering or just regular MCMC. Parallel tempering will be run if
num_temps > 1 Parallel-Tempered MCMC Sampler uses ptemcee, a fork of the emcee Affine-infariant sampler
Affine-Invariant Ensemble MCMC Sampler uses emcee.

Warning: may not work well for multi-modal distributions

Parameters

• system (system.System) – system.System object

• num_temps (int) – number of temperatures to run the sampler at. Parallel tempering will
be used if num_temps > 1 (default=20)

• num_walkers (int) – number of walkers at each temperature (default=1000)

• num_threads (int) – number of threads to use for parallelization (default=1)

• chi2_type (str, optional) – either “standard”, or “log”

2.5. Detailed API Documentation 129

orbitize Documentation

• like (str) – name of likelihood function in lnlike.py

• custom_lnlike (func) – ability to include an addition custom likelihood function in the fit.
The function looks like clnlikes = custon_lnlike(params) where params is a RxM
array of fitting parameters, where R is the number of orbital paramters (can be passed in
system.compute_model()), and M is the number of orbits we need model predictions for. It
returns clnlikes which is an array of length M, or it can be a single float if M = 1.

• prev_result_filename (str) – if passed a filename to an HDF5 file containing a or-
bitize.Result data, MCMC will restart from where it left off.

Written: Jason Wang, Henry Ngo, 2018

check_prior_support()

Review the positions of all MCMC walkers, to verify that they are supported by the prior space. This
function will raise a descriptive ValueError if any positions lie outside prior support. Otherwise, it will
return nothing.

(written): Adam Smith, 2021

chop_chains(burn, trim=0)
Permanently removes steps from beginning (and/or end) of chains from the Results object. Also updates
curr_pos if steps are removed from the end of the chain.

Parameters

• burn (int) – The number of steps to remove from the beginning of the chains

• trim (int) – The number of steps to remove from the end of the chians (optional)

Warning: Does not update bookkeeping arrays within MCMC sampler object.

(written): Henry Ngo, 2019

examine_chains(param_list=None, walker_list=None, n_walkers=None, step_range=None,
transparency=1)

Plots position of walkers at each step from Results object. Returns list of figures, one per parameter :param
param_list: List of strings of parameters to plot (e.g. “sma1”)

If None (default), all parameters are plotted

Parameters

• walker_list – List or array of walker numbers to plot If None (default), all walkers are
plotted

• n_walkers (int) – Randomly select n_walkers to plot Overrides walker_list if this is set
If None (default), walkers selected as per walker_list

• step_range (array or tuple) – Start and end values of step numbers to plot If None
(default), all the steps are plotted

• transparency (int or float) – Determines visibility of the plotted function If 1 (de-
fault) results plot at 100% opacity

Returns
Walker position plot for each parameter selected

Return type
List of matplotlib.pyplot.Figure objects

130 Chapter 2. User Guide:

orbitize Documentation

(written): Henry Ngo, 2019

run_sampler(total_orbits, burn_steps=0, thin=1, examine_chains=False, output_filename=None,
periodic_save_freq=None)

Runs PT MCMC sampler. Results are stored in self.chain and self.lnlikes. Results also added to
orbitize.results.Results object (self.results)

Note: Can be run multiple times if you want to pause and inspect things. Each call will continue from the
end state of the last execution.

Parameters

• total_orbits (int) – total number of accepted possible orbits that are desired. This
equals num_steps_per_walker x num_walkers

• burn_steps (int) – optional paramter to tell sampler to discard certain number of steps
at the beginning

• thin (int) – factor to thin the steps of each walker by to remove correlations in the walker
steps

• examine_chains (boolean) – Displays plots of walkers at each step by running exam-
ine_chains after total_orbits sampled.

• output_filename (str) – Optional filepath for where results file can be saved.

• periodic_save_freq (int) – Optionally, save the current results into
output_filename every nth step while running, where n is value passed into this
variable.

Returns
the sampler used to run the MCMC

Return type
emcee.sampler object

validate_xyz_positions()

If using the XYZ basis, walkers might be initialized in an invalid region of parameter space. This function
fixes that by replacing invalid positions by new randomly generated positions until all are valid.

class orbitize.sampler.OFTI(system, like='chi2_lnlike', custom_lnlike=None, chi2_type='standard')
OFTI Sampler

Parameters

• system (system.System) – system.System object

• like (string) – name of likelihood function in lnlike.py

• custom_lnlike (func) – ability to include an addition custom likelihood function in the fit.
The function looks like clnlikes = custon_lnlike(params) where params is a RxM
array of fitting parameters, where R is the number of orbital paramters (can be passed in
system.compute_model()), and M is the number of orbits we need model predictions for. It
returns clnlikes which is an array of length M, or it can be a single float if M = 1.

Written: Isabel Angelo, Sarah Blunt, Logan Pearce, 2018

2.5. Detailed API Documentation 131

orbitize Documentation

prepare_samples(num_samples)
Prepare some orbits for rejection sampling. This draws random orbits from priors, and performs scale &
rotate.

Parameters
num_samples (int) – number of orbits to draw and scale & rotate for OFTI to run rejection
sampling on

Returns
array of prepared samples. The first dimension has size of num_samples. This should be
passed into OFTI.reject()

Return type
np.array

reject(samples)
Runs rejection sampling on some prepared samples.

Parameters
samples (np.array) – array of prepared samples. The first dimension has size
num_samples. This should be the output of prepare_samples().

Returns

np.array: a subset of samples that are accepted based on the data.

np.array: the log likelihood values of the accepted orbits.

Return type
tuple

run_sampler(total_orbits, num_samples=10000, num_cores=None, OFTI_warning=60.0)
Runs OFTI in parallel on multiple cores until we get the number of total accepted orbits we want.

Parameters

• total_orbits (int) – total number of accepted orbits desired by user

• num_samples (int) – number of orbits to prepare for OFTI to run rejection sampling on.
Defaults to 10000.

• num_cores (int) – the number of cores to run OFTI on. Defaults to number of cores
availabe.

• OFTI_warning (float) – if OFTI doesn’t accept a single orbit before this amount of time
(in seconds), print a warning suggesting to try MCMC. If None, don’t print a warning.

Returns
array of accepted orbits. Size: total_orbits.

Return type
np.array

Written by: Vighnesh Nagpal(2019)

class orbitize.sampler.Sampler(system, like='chi2_lnlike', custom_lnlike=None, chi2_type='standard')
Abstract base class for sampler objects. All sampler objects should inherit from this class.

Written: Sarah Blunt, 2018

132 Chapter 2. User Guide:

orbitize Documentation

2.5.13 System

class orbitize.system.System(num_secondary_bodies, data_table, stellar_or_system_mass, plx, mass_err=0,
plx_err=0, restrict_angle_ranges=False, tau_ref_epoch=58849,
fit_secondary_mass=False, hipparcos_IAD=None, gaia=None,
fitting_basis='Standard', use_rebound=False)

A class to store information about a system (data & priors) and calculate model predictions given a set of orbital
parameters.

Parameters

• num_secondary_bodies (int) – number of secondary bodies in the system. Should be at
least 1.

• data_table (astropy.table.Table) – output from orbitize.read_input.
read_file()

• stellar_or_system_mass (float) – mass of the primary star (if fitting for dynamical
masses of both components) or total system mass (if fitting using relative astrometry only)
[M_sol]

• plx (float) – mean parallax of the system, in mas

• mass_err (float, optional) – uncertainty on stellar_or_system_mass, in M_sol

• plx_err (float, optional) – uncertainty on plx, in mas

• restrict_angle_ranges (bool, optional) – if True, restrict the ranges of the position
angle of nodes to [0,180) to get rid of symmetric double-peaks for imaging-only datasets.

• tau_ref_epoch (float, optional) – reference epoch for defining tau (MJD). Default is
58849 (Jan 1, 2020).

• fit_secondary_mass (bool, optional) – if True, include the dynamical mass of the
orbiting body as a fitted parameter. If this is set to False, stellar_or_system_mass is
taken to be the total mass of the system. (default: False)

• hipparcos_IAD (orbitize.hipparcos.HipparcosLogProb) – an object containing in-
formation & precomputed values relevant to Hipparcos IAD fitting. See hipparcos.py for
more details.

• gaia (orbitize.gaia.GaiaLogProb) – an object containing information & precomputed
values relevant to Gaia astrometrry fitting. See gaia.py for more details.

• fitting_basis (str) – the name of the class corresponding to the fitting basis to be used.
See basis.py for a list of implemented fitting bases.

• use_rebound (bool) – if True, use an n-body backend solver instead of a Keplerian solver.

Priors are initialized as a list of orbitize.priors.Prior objects and stored in the variable System.sys_priors. You
should initialize this class, then overwrite priors you wish to customize. You can use the System.param_idx
attribute to figure out which indices correspond to which fitting parameters. See the “changing priors” tutorial
for more detail.

Written: Sarah Blunt, Henry Ngo, Jason Wang, 2018

compute_all_orbits(params_arr, epochs=None, comp_rebound=False)
Calls orbitize.kepler.calc_orbit and optionally accounts for multi-body interactions. Also computes total
quantities like RV (without jitter/gamma)

Parameters

2.5. Detailed API Documentation 133

orbitize Documentation

• params_arr (np.array of float) – RxM array of fitting parameters, where R is the
number of parameters being fit, and M is the number of orbits we need model predictions
for. Must be in the same order documented in System() above. If M=1, this can be a 1d
array.

• epochs (np.array of float) – epochs (in mjd) at which to compute orbit predictions.

• comp_rebound (bool, optional) – A secondary optional input for use of N-body solver
Rebound; by default, this will be set to false and a Kepler solver will be used instead.

Returns

raoff (np.array of float): N_epochs x N_bodies x N_orbits array of
RA offsets from barycenter at each epoch.

decoff (np.array of float): N_epochs x N_bodies x N_orbits array of
Dec offsets from barycenter at each epoch.

vz (np.array of float): N_epochs x N_bodies x N_orbits array of
radial velocities at each epoch.

Return type
tuple

compute_model(params_arr, use_rebound=False)
Compute model predictions for an array of fitting parameters. Calls the above compute_all_orbits() func-
tion, adds jitter/gamma to RV measurements, and propagates these predictions to a model array that can be
subtracted from a data array to compute chi2.

Parameters

• params_arr (np.array of float) – RxM array of fitting parameters, where R is the
number of parameters being fit, and M is the number of orbits we need model predictions
for. Must be in the same order documented in System() above. If M=1, this can be a 1d
array.

• use_rebound (bool, optional) – A secondary optional input for use of N-body solver
Rebound; by default, this will be set to false and a Kepler solver will be used instead.

Returns

np.array of float: Nobsx2xM array model predictions. If M=1, this is
a 2d array, otherwise it is a 3d array.

np.array of float: Nobsx2xM array jitter predictions. If M=1, this is
a 2d array, otherwise it is a 3d array.

Return type
tuple of

convert_data_table_radec2seppa(body_num=1)
Converts rows of self.data_table given in radec to seppa. Note that self.input_table remains unchanged.

Parameters
body_num (int) – which object to convert (1 = first planet)

save(hf)
Saves the current object to an hdf5 file

Parameters
hf (h5py._hl.files.File) – a currently open hdf5 file in which to save the object.

134 Chapter 2. User Guide:

orbitize Documentation

orbitize.system.radec2seppa(ra, dec, mod180=False)
Convenience function for converting from right ascension/declination to separation/ position angle.

Parameters

• ra (np.array of float) – array of RA values, in mas

• dec (np.array of float) – array of Dec values, in mas

• mod180 (Bool) – if True, output PA values will be given in range [180, 540) (useful for
plotting short arcs with PAs that cross 360 during observations) (default: False)

Returns
(separation [mas], position angle [deg])

Return type
tuple of float

orbitize.system.seppa2radec(sep, pa)
Convenience function to convert sep/pa to ra/dec

Parameters

• sep (np.array of float) – array of separation in mas

• pa (np.array of float) – array of position angles in degrees

Returns
(ra [mas], dec [mas])

Return type
tuple

orbitize.system.transform_errors(x1, x2, x1_err, x2_err, x12_corr, transform_func, nsamps=100000)

Transform errors and covariances from one basis to another using a Monte Carlo apporach

Parameters

• x1 (float) – planet location in first coordinate (e.g., RA, sep) before transformation

• x2 (float) – planet location in the second coordinate (e.g., Dec, PA) before transformation)

• x1_err (float) – error in x1

• x2_err (float) – error in x2

• x12_corr (float) – correlation between x1 and x2

• transform_func (function) – function that transforms between (x1, x2) and (x1p, x2p)
(the transformed coordinates). The function signature should look like: x1p, x2p = trans-
form_func(x1, x2)

• nsamps – number of samples to draw more the Monte Carlo approach. More is slower but
more accurate.

2.5. Detailed API Documentation 135

orbitize Documentation

2.6 orbitize! Manual

2.6.1 Intro to orbitize!

orbitize! hinges on the two-body problem, which describes the paths of two bodies gravitationally bound to each
other as a function of time, given parameters determining the position and velocity of both objects at a particular epoch.
There are many basis sets (orbital bases) that can be used to describe an orbit, which can then be solved using Kepler’s
equation, but first it is important to be explicit about coordinate systems.

Note: For an interactive visualization to define and help users understand our coordinate system, you can check out
this GitHub tutorial.

There is also a YouTube video with use and explanation of the coordinate system by Sarah Blunt.

In its “standard” mode, orbitize! assumes that the user only has relative astrometric data to fit. In the orbitize!
coordinate system, relative R.A. and declination can be expressed as the following functions of orbital parameters

∆𝑅.𝐴. = 𝜋𝑎(1− 𝑒𝑐𝑜𝑠𝐸)[𝑐𝑜𝑠2
𝑖

2
𝑠𝑖𝑛(𝑓 + 𝜔𝑝 +Ω)− 𝑠𝑖𝑛2 𝑖

2
𝑠𝑖𝑛(𝑓 + 𝜔𝑝 − Ω)]

∆𝑑𝑒𝑐𝑙. = 𝜋𝑎(1− 𝑒𝑐𝑜𝑠𝐸)[𝑐𝑜𝑠2
𝑖

2
𝑐𝑜𝑠(𝑓 + 𝜔𝑝 +Ω) + 𝑠𝑖𝑛2 𝑖

2
𝑐𝑜𝑠(𝑓 + 𝜔𝑝 − Ω)]

where , , 𝜔𝑝, , and are orbital parameters, and is the system parallax. f is the true anomaly, and E is the eccentric
anomaly, which are related to elapsed time through Kepler’s equation and Kepler’s third law

𝑀 = 2𝜋(
𝑡

𝑃
− (𝜏 − 𝜏𝑟𝑒𝑓))

(
𝑃

𝑦𝑟
)2 = (

𝑎

𝑎𝑢
)3(

𝑀⊙

𝑀𝑡𝑜𝑡
)

𝑀 = 𝐸 − 𝑒𝑠𝑖𝑛𝐸

𝑓 = 2𝑡𝑎𝑛−1[

√︂
1 + 𝑒

1− 𝑒
𝑡𝑎𝑛

𝐸

2
]

orbitize! employs two Kepler solvers to convert between mean and eccentric anomaly: one that is efficient for the
highest eccentricities, and Newton’s method, which in other cases is more efficient for solving for the average orbit.
See Blunt et al. (2020) for more detail.

From scrutinizing the above sets of equations, one may observe a few important degeneracies:

1. Individual component masses do not show up anywhere in this equation set.

2. The degeneracy between semimajor axis , total mass 𝑡𝑜𝑡, and parallax . If we just had relative astrometric measure-
ments and no external knowledge of the system parallax, we would not be able to distinguish between a system that has
larger distance and larger semimajor axis (and therefore larger total mass, assuming a fixed period) from a system that
has smaller distance, smaller semimajor axis, and smaller total mass.

3. The argument of periastron 𝜔𝑝 and the position angle of nodes . The above defined R.A. and decl. functions are
invariant to the transformation:

𝜔′
𝑝 = 𝜔𝑝 + 𝜋

Ω′ = Ω− 𝜋

which creates a 180◦ degeneracy between particular values of 𝜔𝑝 and , and a characteristic “double-peaked” structure
in marginalized 1D posteriors of these parameters.

Solutions to breaking degeneracies 1 and 3 can be found in the next section.

136 Chapter 2. User Guide:

https://github.com/sblunt/orbitize/blob/main/docs/tutorials/show-me-the-orbit.ipynb
https://www.youtube.com/watch?v=0e24VUhQmbM
https://iopscience.iop.org/article/10.3847/1538-3881/ab6663

orbitize Documentation

2.6.2 Using Radial Velocities

In the orbitize! coordinate system, and relative to the system barycenter, the radial velocity of the planet due to the
gravitational influence of the star is:

𝑟𝑣𝑝(𝑓) =

√︃
𝐺

(1− 𝑒2)
𝑀*𝑠𝑖𝑛𝑖(𝑀𝑡𝑜𝑡)

−1/2𝑎−1/2(𝑐𝑜𝑠(𝜔𝑝 + 𝑓) + 𝑒𝑐𝑜𝑠𝜔𝑝)

𝑟𝑣*(𝑓) =

√︃
𝐺

(1− 𝑒2)
𝑀𝑝𝑠𝑖𝑛𝑖(𝑀𝑡𝑜𝑡)

−1/2𝑎−1/2(𝑐𝑜𝑠(𝜔* + 𝑓) + 𝑒𝑐𝑜𝑠𝜔*)

where is the argument of periastron of the star’s orbit, which is equal to + 180◦.

In these equations, the individual component masses m and m enter. This means radial velocity measurements break
the total mass degeneracy and enable measurements of individual component masses (“dynamical” masses). However
it is crucial to keep in mind that radial velocities of a planet do not enable dynamical mass measurements of the planet
itself, but of the star. Radial velocity measurements also break the / degeneracy discussed in the previous section,
uniquely orienting the orbit in 3D space.

orbitize! can perform joint fits of RV and astrometric data in two different ways, which have complementary appli-
cations.

The first method is automatically triggered when an orbitize! user inputs radial velocity data. orbitize! automat-
ically parses the data, sets up an appropriate model, then runs the user’s Bayesian computation algorithm of choice
to jointly constrain all free parameters in the fit. orbitize! can handle both primary and secondary RVs, and fits
for the appropriate dynamical masses when RVs are present; when primary RVs are included, orbitize! fits for the
dynamical masses of secondary objects, and vice versa. Instrumental nuisance parameters (RV zeropoint offset, , and
white noise jitter,) for each RV instrument are also included as additional free parameters in the fit if the user specifies
different instrument names in the data file.

The second method of jointly fitting RV and astrometric data in orbitize! separates out the fitting of radial velocities
and astrometry, enabling a user to fit “one at a time,” and combine the results in a Bayesian framework. First, a user
performs a fit to just the radial velocity data using, for example, radvel (but can be any radial velocity orbit-fitting code).
The user then feeds the numerical posterior samples into orbitize! through the orbitize.priors.KDEPrior ob-
ject. This prior creates a representation of the prior using kernel density estimation (kernel density estimation), which
can then be used to generate random prior samples or compute the prior probability of a sample orbit. Importantly, this
prior preserves covariances between input parameters, allowing orbitize! to use an accurate representation of the
RV posterior to constrain the fit. This method can be referred to as the “posteriors as priors” method, since posteriors
output from a RV fitting code are, through KDE sampling, being applied as priors in orbitize! .

More coming soon!

2.6. orbitize! Manual 137

https://mathisonian.github.io/kde/

orbitize Documentation

138 Chapter 2. User Guide:

CHAPTER

THREE

CHANGELOG:

3.0.0 (TBD)

• discuss MCMC autocorrelation in MCMC tutorial (@michaelkmpoon)

• add time warning if OFTI doesn’t accept an orbit in first 60 s (@michaelkmpoon)

2.2.2 (2023-06-30)

• tests now overwrite any generated text files (@sblunt)

2.2.1 (2023-06-28)

• tau_to_tp function now accepts array of after_date (@tomasstolker/@semaphoreP)

2.2.0 (2023-06-21)

• set up new CI system using GH actions (@sblunt)

• removed radvel as dependency, and moved radvel_utils subpackage to new dir (@sblunt). This is a breaking
change for users of orbitize.radvel_utils.

2.1.4 (2023-06-20)

• unit tests hotfixes (@semaphoreP)

• use forked ptemcee (@sblunt)

2.1.3 (2023-02-07)

• Compatibility with numpy v1.24 (issue #330 and #331; @tomasstolker)

2.1.2 (2022-08-31)

• Bugfix for saving/loading fits using IAD (issue #324; @sblunt)

2.1.1 (2022-05-24)

• Hotfix for one of the log-chi2 unit tests (@sblunt)

2.1.0 (2022-05-24)

• Added a (more numerically stable) log-chi2 option for calculating likelihood (@Mireya-A and @lhirsch238)

2.0.1 (2022-04-22)

• Addressed plotting bugs: issues #316/#309, #314, #311 (@semaphoreP)

• Made Gaia module runnable without internet and added some Gaia/Hipparcos unit tests (@sblunt)

2.0.0 (2021-10-13)

This is the official release of orbitize! version 2.

Big changes:

139

orbitize Documentation

• Fit Gaia positions (@sblunt)

• New plotting module & API (@sblunt)

• Relative planet RVs now officially supported & tested (@sblunt)

• GPU Kepler solver (@devincody)

• RV end-to-end test added (@vighnesh-nagpal)

Small changes:

• Hipparcos calculation bugfix (@sblunt)

• v1 results backwards compatibility bugfix (@sblunt)

• windows install docs update (@sblunt

• basis bugfix with new API (@TirthDS, @sblunt)

• handle Hipparcos 2021 data format (@sblunt)

• clarify API on mtot/mstar (@lhirsch238, @sblunt)

2.0b1 (2021-09-03)

This is the beta release of orbitize! version 2.

Big changes:

• N-body Kepler solver backend! (@sofiacovarrubias)

• Fitting in XYZ orbital basis! (@rferrerc)

• API for fitting in arbitrary new orbital bases! (@TirthDS)

• compute_all_orbits separated out, streamlining stellar astrometry & RV calculations (@sblunt)

• Hip IAD! (@sblunt)

• param_idx now used everywhere under the hood (system parsing updated) (@sblunt)

• KDE prior added (inspiration=training on RV fits) (@jorgellop)

Small changes:

• HD 4747 rv data file fix for the RV tutorial (@lhirsch238)

• Add check_prior_support to sampler.MCMC (@adj-smith)

• Update example generation code in MCMC v OFTI tutorial (@semaphoreP)

• Fixed plotting bug (issue #243) (@TirthDS)

• Expand FAQ section (@semaphoreP)

• use astropy tables in results (@semaphoreP)

• Expand converge section of MCMC tutorial (@semaphoreP)

• Deprecated functions and deprecation warnings officially removed (@semaphoreP)

• Fix logic in setting of track_planet_perturbs (@sblunt)

• Fix plotting error if orbital periods are > 1e9 days (@sblunt)

• Add method for printing results of a fit (@sblunt)

1.16.1 (2021-06-27)

• Fixed chop_chains() function to copy original data over when updating Results object (@TirthDS)

140 Chapter 3. Changelog:

orbitize Documentation

1.16.0 (2021-06-23)

• User-defined prior on PAN were not being applied if OFTI is used; fixed (@sblunt)

• Dates in HD 4747 data file were incorrect; fixed (@lhirsch238)

1.15.5 (2021-07-20)

• Addressed issue #177, giving Results and Sampler classes a parameter label array (@sblunt)

• Fixed a bug that was causing RA/Dec data points to display wrong in orbit plots (@sblunt)

1.15.4 (2021-06-18)

• Bugfix for issue #234 (@semaphoreP, @adj-smith)

1.15.3 (2021-06-07)

• Add codeastro mode to pytest that prints out a SECRET CODE if tests pass omgomg (@semaphoreP)

1.15.2 (2021-05-11)

• Fixed backwards-compatibility bug with version numbers and saving/loading (@semaphoreP, @wbalmer)

1.15.1 (2021-03-29)

• Fixed bug where users with Results objects from v<14.0 couldn’t load using v>=14.0 (@semaphoreP, @wbalmer)

• Fixed order of Axes objects in Advanced Plotting tutorial (@wbalmer, @sblunt)

1.15.0 (2021-02-23)

• Handle covariances in input astrometry (@semaphoreP)

1.14.0 (2021-02-12)

• Version number now saved in results object (@hgallamore)

• Joint RV+astrometry fits can now handle different RV instruments! (@vighnesh-nagpal,
@Rob685, @lhirsch238)

• New “FAQ” section added to docs (@semaphoreP)

• Bugfix for multiplanet code (@semaphoreP) introduced in PR #192

• now you can pass a preexisting Figure object into results.plot_orbit (@sblunt)

• colorbar label is now “Epoch [year]” (@sblunt)

• corner plot maker can now handle fixed parameters without crashing (@sblunt)

1.13.1 (2021-01-25)

• compute_sep in radvel_utils submodule now returns mp (@sblunt)

• astropy._erfa was deprecated (now in separate package). Dependencies updated. (@sblunt)

1.13.0 (2020-11-8)

• Added radvel-utils submodule which allows users to calculate projected separation posteriors given RadVel
chains (@sblunt)

• Fixed a total mass/primary mass mixup bug that was causing problems for equal-mass binary RV+astrometry
joint fits (@sblunt)

• Bugfix for multiplanet perturbation approximation: now only account for inner planets only when computing
perturbations (@semaphoreP)

1.12.1 (2020-9-6)

141

orbitize Documentation

• tau_ref_epoch is now set to Jan 1, 2020 throughout the code (@semaphoreP)

• restrict_angle_ranges keyword now works as expected for OFTI (@sblunt)

1.12.0 (2020-8-28)

• Compatibility with emcee>=3 (@sblunt)

1.11.3 (2020-8-20)

• Save results section of OFTI tutorial now current (@rferrerc)

• Modifying MCMC initial positions tutorial documentation now uses correct orbital elements (@rferrerc)

1.11.2 (2020-8-10)

• Added transparency option for plotting MCMC chains (@sofiacovarrubias)

• Removed some redundant code (@MissingBrainException)

1.11.1 (2020-6-11)

• Fixed a string formatting bug causing corner plots to fail for RV+astrometry fits

1.11.0 (2020-4-14)

• Multiplanet support!

• Changes to directory structure of sample data files

• Fixed a bug that was causing corner plots to fail on loaded results objects

1.10.0 (2020-3-6)

• Joint RV + relative astrometry fitting capabilities!

• New tutorial added

1.9.0 (2020-1-24)

• Require astropy>=4

• Minor documentation upgrades

• This is the first Python 2 noncompliant version

1.8.0 (2020-1-24)

• Bugfixes related to numpy and astropy upgrades

• This is the last version that will support Python 2

1.7.0 (2019-11-10)

• Default corner plots now display angles in degrees instead of radians

• Add a keyword for plotting orbits that cross PA=360

1.6.0 (2019-10-1)

• Mikkola solver now implemented in C-Kepler solver

• Fixed a bug with parallel processing for OFTI

• Added orbit vizualisation jupyter nb show-me-the-orbit to docs/tutorials

• New methods for viewing/chopping MCMC chains

• Require emcee<3 for now

1.5.0 (2019-9-9)

142 Chapter 3. Changelog:

orbitize Documentation

• Parallel processing for OFTI.

• Fixed a bug converting errors in RA/Dec to sep/PA in OFTI.

• OFTI and MCMC now both return likelihood, whereas before one returned posterior.

• Updated logic for restricting Omega and omega bounds.

1.4.0 (2019-7-15)

• API change to lay the groundwork for dynamical mass calculation.

• JeffreysPrior -> LogUniformPrior

• New tutorials.

• Added some informative error messages for input tables.

• Bugfixes.

1.3.1 (2019-6-19)

• Bugfix for RA/Dec inputs to the OFTI sampler (Issue #108).

1.3.0 (2019-6-4)

• Add ability to customize date of tau definition.

• Sampler now saves choice of tau reference with results.

• Default tau value is now Jan 1, 2020.

• Small bugfixes.

1.2.0 (2019-3-21)

• Remove unnecessary astropy date warnings.

• Add custom likelihood function.

• Add progress bar for ptemcee sampler.

• Add customizable color axis for orbit plots.

• Small bugfixes.

1.1.0 (2019-1-6)

• Add sep/PA panels to orbit plot.

• GaussianPrior now operates on only positive numbers by default.

1.0.2 (2018-12-4)

• Expand input reading functionality.

• Bugfixes for MCMC.

1.0.1 (2018-11-20)

• Bugfix for building on CentOS machines.

1.0.0 (2018-10-30)

• Initial release.

143

orbitize Documentation

144 Chapter 3. Changelog:

PYTHON MODULE INDEX

o
orbitize, 133
orbitize.basis, 103
orbitize.driver, 113
orbitize.gaia, 113
orbitize.hipparcos, 115
orbitize.kepler, 116
orbitize.lnlike, 118
orbitize.nbody, 119
orbitize.plot, 120
orbitize.priors, 121
orbitize.read_input, 126
orbitize.results, 128
orbitize.sampler, 129
orbitize.system, 133

145

orbitize Documentation

146 Python Module Index

INDEX

A
add_samples() (orbitize.results.Results method), 128
all_lnpriors() (in module orbitize.priors), 125

B
Basis (class in orbitize.basis), 103

C
calc_orbit() (in module orbitize.kepler), 116
calc_orbit() (in module orbitize.nbody), 119
check_prior_support() (orbitize.sampler.MCMC

method), 130
chi2_lnlike() (in module orbitize.lnlike), 118
chi2_norm_term() (in module orbitize.lnlike), 118
chop_chains() (orbitize.sampler.MCMC method), 130
compute_all_orbits() (orbitize.system.System

method), 133
compute_companion_mass() (orbitize.basis.SemiAmp

method), 106
compute_companion_sma() (orbitize.basis.SemiAmp

method), 106
compute_lnlike() (orbitize.gaia.GaiaLogProb

method), 114
compute_lnlike() (or-

bitize.hipparcos.HipparcosLogProb method),
115

compute_lnprob() (orbitize.priors.GaussianPrior
method), 122

compute_lnprob() (orbitize.priors.KDEPrior method),
122

compute_lnprob() (orbitize.priors.LogUniformPrior
method), 123

compute_lnprob() (or-
bitize.priors.NearestNDInterpPrior method),
124

compute_lnprob() (orbitize.priors.SinPrior method),
124

compute_lnprob() (orbitize.priors.UniformPrior
method), 125

compute_model() (orbitize.system.System method), 134
construct_priors() (orbitize.basis.Period method),

105

construct_priors() (orbitize.basis.SemiAmp
method), 107

construct_priors() (orbitize.basis.Standard method),
109

construct_priors() (orbitize.basis.XYZ method), 110
convert_data_table_radec2seppa() (or-

bitize.system.System method), 134

D
draw_samples() (orbitize.priors.GaussianPrior

method), 122
draw_samples() (orbitize.priors.KDEPrior method),

122
draw_samples() (orbitize.priors.LinearPrior method),

123
draw_samples() (orbitize.priors.LogUniformPrior

method), 124
draw_samples() (orbitize.priors.NearestNDInterpPrior

method), 124
draw_samples() (orbitize.priors.SinPrior method), 125
draw_samples() (orbitize.priors.UniformPrior

method), 125
Driver (class in orbitize.driver), 113

E
examine_chains() (orbitize.sampler.MCMC method),

130

F
func() (orbitize.basis.SemiAmp method), 107

G
GaiaLogProb (class in orbitize.gaia), 113
GaussianPrior (class in orbitize.priors), 121

H
HipparcosLogProb (class in orbitize.hipparcos), 115

I
increment_param_num() (orbitize.priors.KDEPrior

method), 123

147

orbitize Documentation

increment_param_num() (or-
bitize.priors.NearestNDInterpPrior method),
124

K
KDEPrior (class in orbitize.priors), 122

L
LinearPrior (class in orbitize.priors), 123
load_results() (orbitize.results.Results method), 128
LogUniformPrior (class in orbitize.priors), 123

M
MCMC (class in orbitize.sampler), 129
module

orbitize, 103, 113, 115, 116, 118–121, 126, 128,
129, 133

orbitize.basis, 103
orbitize.driver, 113
orbitize.gaia, 113
orbitize.hipparcos, 115
orbitize.kepler, 116
orbitize.lnlike, 118
orbitize.nbody, 119
orbitize.plot, 120
orbitize.priors, 121
orbitize.read_input, 126
orbitize.results, 128
orbitize.sampler, 129
orbitize.system, 133

N
NearestNDInterpPrior (class in orbitize.priors), 124
nielsen_iad_refitting_test() (in module or-

bitize.hipparcos), 116

O
OFTI (class in orbitize.sampler), 131
orbitize

module, 103, 113, 115, 116, 118–121, 126, 128, 129,
133

orbitize.basis
module, 103

orbitize.driver
module, 113

orbitize.gaia
module, 113

orbitize.hipparcos
module, 115

orbitize.kepler
module, 116

orbitize.lnlike
module, 118

orbitize.nbody
module, 119

orbitize.plot
module, 120

orbitize.priors
module, 121

orbitize.read_input
module, 126

orbitize.results
module, 128

orbitize.sampler
module, 129

orbitize.system
module, 133

P
Period (class in orbitize.basis), 104
plot_corner() (in module orbitize.plot), 120
plot_corner() (orbitize.results.Results method), 129
plot_orbits() (in module orbitize.plot), 120
plot_orbits() (orbitize.results.Results method), 129
prepare_samples() (orbitize.sampler.OFTI method),

131
print_results() (orbitize.results.Results method), 129
Prior (class in orbitize.priors), 124

R
radec2seppa() (in module orbitize.system), 134
read_file() (in module orbitize.read_input), 126
reject() (orbitize.sampler.OFTI method), 132
Results (class in orbitize.results), 128
run_sampler() (orbitize.sampler.MCMC method), 131
run_sampler() (orbitize.sampler.OFTI method), 132

S
Sampler (class in orbitize.sampler), 132
save() (orbitize.system.System method), 134
save_results() (orbitize.results.Results method), 129
SemiAmp (class in orbitize.basis), 105
seppa2radec() (in module orbitize.system), 135
set_default_mass_priors() (orbitize.basis.Basis

method), 103
set_hip_iad_priors() (orbitize.basis.Basis method),

104
set_rv_priors() (orbitize.basis.Basis method), 104
SinPrior (class in orbitize.priors), 124
Standard (class in orbitize.basis), 108
standard_to_xyz() (orbitize.basis.XYZ method), 110
switch_tau_epoch() (in module orbitize.basis), 111
System (class in orbitize.system), 133

T
tau_to_manom() (in module orbitize.basis), 112

148 Index

orbitize Documentation

tau_to_manom() (in module orbitize.kepler), 117
tau_to_tp() (in module orbitize.basis), 112
to_period_basis() (orbitize.basis.Period method),

105
to_semi_amp_basis() (orbitize.basis.SemiAmp

method), 107
to_standard_basis() (orbitize.basis.Period method),

105
to_standard_basis() (orbitize.basis.SemiAmp

method), 108
to_standard_basis() (orbitize.basis.Standard

method), 109
to_standard_basis() (orbitize.basis.XYZ method),

110
to_xyz_basis() (orbitize.basis.XYZ method), 111
tp_to_tau() (in module orbitize.basis), 112
transform_errors() (in module orbitize.system), 135

U
UniformPrior (class in orbitize.priors), 125

V
validate_xyz_positions() (orbitize.sampler.MCMC

method), 131
verify_params() (orbitize.basis.Basis method), 104
verify_params() (orbitize.basis.SemiAmp method),

108
verify_params() (orbitize.basis.XYZ method), 111

W
write_orbitize_input() (in module or-

bitize.read_input), 127

X
XYZ (class in orbitize.basis), 109
xyz_to_standard() (orbitize.basis.XYZ method), 111

Index 149

	Attribution:
	User Guide:
	Installation
	For Users
	For Windows Users
	For Developers
	Issues?

	Tutorials
	Quick Start
	Formatting Input
	Option 1
	Covariances

	Option 2

	OFTI Introduction
	Basic Orbit Generating
	Plotting
	Histogram
	Corner Plot
	A Note about Convergence
	Orbit Plot

	Advanced OFTI and API Interaction
	Saving and Loading Results

	MCMC Introduction
	Read in Data and Set up Sampler
	Running the MCMC Sampler
	MCMC Convergence
	Diagnostic Functions
	Autocorrelation Time Estimation

	Plotting Basics
	Saving and Loading Results

	Modifying Priors
	Read in Data
	Initialize System Object
	Explore & Modify Priors
	Run OFTI
	Run MCMC

	Advanced Plotting
	1. Test orbit generation with OFTI
	2. Accessing a Results object with computed orbits
	3. (Optional) Load up saved results object
	4. Using our Results object to make plots
	4.1 Corner plots
	Choosing which parameters to plot
	Limiting which samples to display
	Making single variable histogram plots
	Axis label customization
	Overplotting best fit (“truth”) values

	4.2 Orbit Plot
	Customizing orbit plot appearence
	Choosing how orbits are plotted

	4.3 Working with matplotlib Figure objects

	MCMC vs OFTI Comparison
	Generate Synthetic Data
	Short Orbit Fraction
	Longer Orbit Fraction
	Closing Thoughts

	Modifying MCMC Initial Positions
	Import modules
	1) Create Driver object
	2) Access the Sampler object to view the walker positions
	Examine my_driver.sampler.curr_pos

	3) Replace curr_pos with your own initial positions for walkers
	3.1) Generate your own initial positions
	3.2) Using an optimizer to obtain a best fit value
	3.2a) Using scipy.optimize.minimize
	3.3) Scattering walkers
	3.4) Update sampler position
	3.5) Validate your new positions

	Radial Velocity Tutorial for MCMC
	Read and Format Data
	Create Driver Object
	RV Priors
	Running the MCMC Sampler
	Saving Results over Extended MCMC Run
	Plotting and Accesing Saved Results

	Multi-planet Fits
	Plotting
	Corner Plot
	Orbit Plot

	Multiplanet Dynamical Mass

	Using non-orbitize! Posteriors as Priors
	Read Data
	Format Data
	Initialize Priors
	Select the KDE bandwidth

	Fitting in different orbital bases
	The “standard” and “XYZ” bases
	Setting up Sampler in the XYZ basis
	(Properly) initializing walkers in the XYZ basis

	Loading and converting results

	Working with the Hipparcos Intermediate Astrometric Data (IAD)
	Part 1: Obtaining the IAD
	Part 2: Refitting the IAD
	Part 3: Using the IAD in your Orbit-fit

	Frequently Asked Questions
	 and Time of Periastron
	Time of Periastron and Motivation for
	Definition of
	Relation to tp
	Relation to Mean Anomaly

	Defining the orbital plane with i and
	Why do we use a sine prior on inclination?
	What do the values of i mean?
	What do the values of mean?

	Contributing to the Code
	Detailed API Documentation
	Basis
	Driver
	Gaia API Module
	Hipparcos API Module
	Kepler Solver
	Log(Likelihood)
	N-body Backend
	Plotting Methods
	Priors
	Read Input
	Results
	Sampler
	System

	orbitize! Manual
	Intro to orbitize!
	Using Radial Velocities

	Changelog:
	Python Module Index
	Index

